Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 95(4-1): 043308, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505804

RESUMEN

We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046706, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22181306

RESUMEN

Starting from a cluster variational method, and inspired by the correctness of the paramagnetic ansatz [at high temperatures in general, and at any temperature in the two-dimensional (2D) Edwards-Anderson (EA) model] we propose a message-passing algorithm--the dual algorithm--to estimate the marginal probabilities of spin glasses on finite-dimensional lattices. We use the EA models in 2D and 3D as benchmarks. The dual algorithm improves the Bethe approximation, and we show that in a wide range of temperatures (compared to the Bethe critical temperature) our algorithm compares very well with Monte Carlo simulations, with the double-loop algorithm, and with exact calculation of the ground state of 2D systems with bimodal and Gaussian interactions. Moreover, it is usually 100 times faster than other provably convergent methods, as the double-loop algorithm. In 2D and 3D the quality of the inference deteriorates only where the correlation length becomes very large, i.e., at low temperatures in 2D and close to the critical temperature in 3D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA