Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1912): 20220533, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39230452

RESUMEN

The spatial availability of social resources is speculated to structure animal movement decisions, but the effects of social resources on animal movements are difficult to identify because social resources are rarely measured. Here, we assessed whether varying availability of a key social resource-access to receptive mates-produces predictable changes in movement decisions among bighorn sheep in Nevada, the United States. We compared the probability that males made long-distance 'foray' movements, a critical driver of connectivity, across three ecoregions with varying temporal duration of a socially mediated factor, breeding season. We used a hidden Markov model to identify foray events and then quantified the effects of social covariates on the probability of foray using a discrete choice model. We found that males engaged in forays at higher rates when the breeding season was short, suggesting that males were most responsive to the social resource when its existence was short lived. During the breeding season, males altered their response to social covariates, relative to the non-breeding season, though patterns varied, and age was associated with increased foray probability. Our results suggest that animals respond to the temporal availability of social resources when making the long-distance movements that drive connectivity. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.


Asunto(s)
Borrego Cimarrón , Animales , Borrego Cimarrón/fisiología , Masculino , Nevada , Conducta Social , Estaciones del Año , Femenino , Conducta Sexual Animal/fisiología , Dinámica Poblacional , Movimiento
2.
Ecol Evol ; 12(7): e9109, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35866023

RESUMEN

Ecological context-the biotic and abiotic environment, along with its influence on population mixing dynamics and individual susceptibility-is thought to have major bearing on epidemic outcomes. However, direct comparisons of wildlife disease events in contrasting ecological contexts are often confounded by concurrent differences in host genetics, exposure histories, or pathogen strains. Here, we compare disease dynamics of a Mycoplasma ovipneumoniae spillover event that affected bighorn sheep populations in two contrasting ecological contexts. One event occurred on the herd's home range near the Rio Grande Gorge in New Mexico, while the other occurred in a captive facility at Hardware Ranch in Utah. While data collection regimens varied, general patterns of antibody signal strength and symptom emergence were conserved between the two sites. Symptoms appeared in the captive setting an average of 12.9 days postexposure, average time to seroconversion was 24.9 days, and clinical signs peaked at approximately 36 days postinfection. These patterns were consistent with serological testing and subsequent declines in symptom intensity in the free-ranging herd. At the captive site, older animals exhibited more severe declines in body condition and loin thickness, higher symptom burdens, and slower antibody response to the pathogen than younger animals. Younger animals were more likely than older animals to clear infection by the time of sampling at both sites. The patterns presented here suggest that environment may not be a major determinant of epidemiological outcomes in the bighorn sheep-M. ovipneumoniae system, elevating the possibility that host- or pathogen-factors may be responsible for observed variation.

3.
Science ; 370(6522)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303589

RESUMEN

Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Endémicas/veterinaria , Neoplasias Faciales/epidemiología , Neoplasias Faciales/veterinaria , Marsupiales , Animales , Enfermedades Transmisibles Emergentes/genética , Extinción Biológica , Neoplasias Faciales/genética , Filogenia , Tasmania/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA