Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905978

RESUMEN

In natural product studies, the purification of metabolites is an important challenge. To accelerate this step, alternatives such as integrated analytical tools should be employed. Based on this, the chemical study of Swinglea glutinosa (Rutaceae) was performed using two rapid dereplication strategies: Target Analysis (Bruker Daltonics®, Bremen, Germany) MS data analysis combined with MS/MS data obtained from the GNPS platform. Through UHPLC-HRMS data, the first approach allowed, from crude fractions, a quick and visual identification of compounds already reported in the Swinglea genus. Aside from this, by grouping compounds according to their fragmentation patterns, the second approach enabled the detection of eight molecular families, which presented matches for acridonic alkaloids, phenylacrylamides, and flavonoids. Unrelated compounds for S. glutinosa have been isolated and characterized by NMR experiments, Lansamide I, Lansiumamide B, Lansiumamide C, and N-(2-phenylethyl)cinnamamide.


Asunto(s)
Acridonas/análisis , Acrilamidas/análisis , Metabolómica/métodos , Rutaceae/química , Cromatografía Líquida de Alta Presión , Cinamatos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Metabolismo Secundario , Estirenos/aislamiento & purificación
2.
J Agric Food Chem ; 66(29): 7627-7632, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29944364

RESUMEN

Sclerotinia sclerotiorum is responsible for the white mold of soybeans, and the difficulty to control the disease in Brazil is causing million-dollar damages. Stachybotrys levispora has shown activity against S. sclerotiorum. In our present investigation, we analyzed the chemical basis of this inhibition. Eight compounds were isolated, and using spectroscopic methods, we identified their structures as the known substances 7-dechlorogriseofulvin, 7-dechlorodehydrogriseofulvin, griseofulvin, dehydrogriseofulvin, 3,13-dihydroxy-5,9,11-trimethoxy-1-methylbenzophenone, griseophenone A, 13-hydroxy-3,5,9,11-tetramethoxy-1-methylbenzophenone, and 12-chloro-13-hydroxy-3,5,9,11-tetramethoxy-1-methylbenzophenone. Griseofulvin inhibited the mycelial growth of S. sclerotiorum at 2 µg mL-1. Thus, the antagonistic effect of S. levispora to S. sclerotiorum may well be due to the presence of griseofulvins. Our results stimulate new work on the biosynthesis of griseofulvins, to locate genes that encode key enzymes in these routes and use them to increase the production of these compounds and thus potentiate the fungicide effect of this fungus. S. levispora represents an agent for biocontrol, and griseofulvin represents a fungicide to S. sclerotiorum.


Asunto(s)
Ascomicetos/efectos de los fármacos , Fungicidas Industriales/farmacología , Griseofulvina/farmacología , Enfermedades de las Plantas/prevención & control , Stachybotrys/química , Ascomicetos/fisiología , Brasil , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Griseofulvina/química , Griseofulvina/metabolismo , Enfermedades de las Plantas/microbiología , Glycine max/microbiología , Stachybotrys/genética , Stachybotrys/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA