Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 64(5): 1620-7, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9572926

RESUMEN

Soils samples were obtained from pristine ecosystems in six regions on five continents. Two of the regions were boreal forests, and the other four were Mediterranean ecosystems. Twenty-four soil samples from each of four or five sites in each of the regions were enriched by using 3-chlorobenzoate (3CBA), and 3CBA mineralizers were isolated from most samples. These isolates were analyzed for the ability to mineralize 3CBA, and genotypes were determined with repetitive extragenic palindromic PCR genomic fingerprints and restriction digests of the 16S rRNA genes (amplified ribosomal DNA restriction analysis [ARDRA]). We found that our collection of 150 stable 3CBA-mineralizing isolates included 48 genotypes and 44 ARDRA types, which formed seven distinct clusters. The majority (91%) of the genotypes were unique to the sites from which they were isolated, and each genotype was found only in the region from which it was isolated. A total of 43 of the 44 ARDRA types were found in only one region. A few genotypes were repeatedly found in one region but not in any other continental region, suggesting that they are regionally endemic. A correlation between bacterial genotype and vegetative community was found for the South African samples. These results suggest that the ability to mineralize 3CBA is distributed among very diverse genotypes and that the genotypes are not globally dispersed.


Asunto(s)
Bacterias/metabolismo , Clorobenzoatos/metabolismo , Microbiología del Suelo , Bacterias/clasificación , Biodegradación Ambiental , Genotipo , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética
2.
Appl Environ Microbiol ; 64(2): 651-8, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9464403

RESUMEN

Mastodon (Mammut americanum) remains unearthed during excavation of ancient sediments usually consist only of skeletal material, due to postmortem decomposition of soft tissues by microorganisms. Two recent excavations of skeletal remains in anoxic sediments in Ohio and Michigan, however, have uncovered organic masses which appear to be remnants of the small and large intestines, respectively. Macrobotanical examinations of the composition of these masses revealed assemblages of plant material radiocarbon dated to approximately 11,500 years before the present and thought to be incompletely digested food remains from this extinct mammal. We attempted to cultivate and identify bacteria from the intestinal contents, bone-associated sediments, and sediments not in proximity to the remains using a variety of general and selective media. In all, 295 isolates were cultivated, and 38 individual taxa were identified by fatty acid-methyl ester (FAME) profiles and biochemical characteristics (API-20E). The taxonomic positions of selected enteric and obligately anaerobic bacteria were confirmed by 16S ribosomal DNA (rDNA) sequencing. Results indicate that the intestinal and bone-associated samples contained the greatest diversity of bacterial taxa and that members of the family Enterobacteriaceae represented 41% of all isolates and were predominant in the intestinal masses and sediments in proximity to the skeleton but were uncommon in the background sediments. Enterobacter cloacae was the most commonly identified isolate, and partial rDNA sequencing revealed that Rahnella aquatilis was the correct identity of strains suggested by FAME profiles to be Yersinia enterocolitica. No Bacteroides spp. or expected intestinal anaerobes were recovered. The only obligate anaerobes recovered were clostridia, and these were not recovered from the small intestinal masses. Microbiological evidence from this study supports other, macrobotanical data indicating the intestinal origin of these masses. Whether these organisms are direct descendants of the original intestinal microbiota, however, cannot be established.


Asunto(s)
Arqueología , Bacterias/aislamiento & purificación , Intestinos/microbiología , Animales , ADN Ribosómico/química , ARN Ribosómico 16S/genética
3.
Appl Environ Microbiol ; 62(4): 1159-66, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8919776

RESUMEN

Biodegradation of two chlorinated aromatic compounds was found to be a common capability of the microorganisms found in the soils of undisturbed, pristine ecosystems. We used 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3CBA) as enrichment substrates to compare populations of degrading bacteria from six different regions making up two ecosystems. We collected soil samples from four Mediterranean (California, central Chile, the Cape region of South Africa, and southwestern Australia) and two boreal (northern Saskatchewan and northwestern Russia) ecosystems that had no direct exposure to pesticides or to human disturbance. Between 96 and 120 samples from each of the six regions were incubated with 50 ppm of [U-14C]2,4-D or [U-14C]3CBA. Soils from all regions samples mineralized both 2,4-D and 3CBA, but 3CBA was mineralized without a lag period, while 2,4-D was generally not mineralized until the second week. 3CBA degradative capabilities were more evenly distributed spatially than those for 2,4-D. The degradative capabilities of the soils were readily transferred to fresh liquid medium. 3CBA degraders were easily isolated from most soils. We recovered 610 strains that could release carbon dioxide from ring-labeled 3CBA. Of these, 144 strains released chloride and degraded over 80% of 1 mM 3CBA in 3 weeks or less. In contrast, only five 2,4-D degraders could be isolated, although a variety of methods were used in an attempt to culture the degraders. The differences in the distribution and culturability of the bacteria responsible for 3CBA and 2,4-D degradation in these ecosystems suggest that the two substrates are degraded by different populations. We also describe a 14C-based microtiter plate method that allows efficient screening of a large number of samples for biodegradation activity.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Clorobenzoatos/metabolismo , Contaminantes Ambientales/metabolismo , Microbiología del Suelo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Ecosistema , Minerales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA