Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biofouling ; 40(1): 76-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38384189

RESUMEN

The use of ultraviolet-C (UV-C) irradiation in marine biofouling control is a relatively new and potentially disruptive technology. This study examined effects of UV-C exposure on the biofilm-forming diatom, Navicula incerta. UV-C-induced mutations were identified via Illumina HiSeq. A de novo genome was assembled from control sequences and reads from UV-C-exposed treatments were mapped to this genome, with a quantitative estimate of mutagenesis then derived from the frequency of single nucleotide polymorphisms. UV-C exposure increased cyclobutane pyrimidine dimer (CPD) abundance with a direct correlation between lesion formation and fluency. Cellular repair mechanisms gradually reduced CPDs over time, with the highest UV-C fluence treatments having the fastest repair rates. Mutation abundances were, however, negatively correlated with CPD abundance suggesting that UV-C exposure may influence lesion repair. The threshold fluence for CPD formation exceeding CPD repair was >1.27 J cm-2. Fluences >2.54 J cm-2 were predicted to inhibit repair mechanisms. While UV-C holds considerable promise for marine antifouling, diatoms are just one, albeit an important, component of marine biofouling communities. Determining fluence thresholds for other representative taxa, highlighting the most resistant, would allow UV-C treatments to be specifically tuned to target biofouling organisms, whilst limiting environmental effects and the power requirement.


Asunto(s)
Diatomeas , Dímeros de Pirimidina , Diatomeas/genética , Biopelículas , Reparación del ADN , Mutagénesis , Rayos Ultravioleta
2.
Biofouling ; 36(2): 138-145, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32223324

RESUMEN

New processing routes and materials for non-biocidal, antifouling (AF) coatings with an improved performance are currently much sought after for a range of marine applications. Here, the processing, physical properties and marine AF performance of a fluorinated coating based on a thermoplastic (non-crosslinked) fluorinated polymer are reported. It was found that the addition of lubricating oil and hydrodynamic drag reducing microstructures improved the AF properties substantially, i.e. the settlement of a marine biofilm, containing mixed microalgae including diatoms, was reduced to low levels. More importantly, the remaining fouling was removed from the coatings at low hydrodynamic shear rates and promising AF properties were obtained. Moreover, additional potential benefits were revealed originating from the thermoplastic nature of the coating material which might result in significant cost reductions.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Incrustaciones Biológicas/prevención & control , Polímeros de Fluorocarbono/química , Goma/química , Diatomeas/crecimiento & desarrollo , Hidrodinámica , Microalgas/crecimiento & desarrollo , Propiedades de Superficie
3.
ACS Appl Mater Interfaces ; 11(33): 29477-29489, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31397993

RESUMEN

Zwitterionic chemical groups have well-documented resistance to marine fouling species when presented as homogeneous polymer brushes. These model formulations are not, however, suitable for practical fouling-control applications. It is presently unknown if a uniform film of zwitterions is required to elicit nonfouling character via the binding of interfacial water or if the incorporation of zwitterionic functionality into a more practical bulk polymer system will suffice. Here, copolymers of n-butyl methacrylate were synthesized with low incorporation levels (up to 20 mol %) of hydrophilic functionality, including zwitterionic moieties. Their antifouling (AF) properties were evaluated using barnacle cyprids (Balanus improvisus), diatom cells (Navicula incerta), and a multispecies biofilm. The laboratory assays revealed higher resistance of ionic copolymers toward cyprid settlement, which was attributed to their swelling and the presence of nonfreezable water molecules bound tightly to the polymer chains. Additionally, cells of N. incerta and the multispecies biofilm were removed more effectively on polymers containing sulfobetaine methacrylate and sulfopropyl methacrylate moieties. The results indicate that the presence of tightly bound interfacial water is not limited to model systems of pure hydrophilic homopolymers, but that this mechanism can also reduce the settlement and adhesion of fouling species via bulk copolymer systems with limited hydrophilic content. The swelling of polymers with hydrophilic content may also contribute to their AF efficacy, and such materials may therefore represent a route to translation of the well-documented nonfouling character of zwitterions into practical, industrially relevant coating formulations.

4.
Biofouling ; 33(10): 892-903, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29083230

RESUMEN

Zwitterionic materials display antifouling promise, but their potential in marine anti-biofouling is still largely unexplored. This study evaluates the effectiveness of incorporating small quantities (0-20% on a molar basis) of zwitterions as sulfobetaine methacrylate (SBMA) or carboxybetaine methacrylate (CBMA) into lauryl methacrylate-based coatings whose relatively hydrophobic nature encourages adhesion of the diatom Navicula incerta, a common microfouling organism responsible for the formation of 'slime'. This approach allows potential enhancements in antifouling afforded by zwitterion incorporation to be easily quantified. The results suggest that the incorporation of CBMA does provide a relatively minor enhancement in fouling-release performance, in contrast to SBMA which does not display any enhancement. Studies with coatings incorporating mixtures of varying ratios of the cationic monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride and the anionic monomer (3-sulfopropyl)methacrylate, which offer a potentially lower cost approach to the incorporation of anionic and cationic charge, suggest these monomers impart little significant effect on biofouling.


Asunto(s)
Betaína/análogos & derivados , Incrustaciones Biológicas/prevención & control , Diatomeas/efectos de los fármacos , Metacrilatos/farmacología , Polímeros/farmacología , Betaína/química , Betaína/farmacología , Diatomeas/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polímeros/química , Propiedades de Superficie
5.
Chemistry ; 11(9): 2610-20, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15651019

RESUMEN

Novel types of microporous material are required for chemoselective adsorptions, separations and heterogeneous catalysis. This concept article describes recent research directed towards the synthesis of polymeric materials that possess microporosity that is intrinsic to their molecular structures. These polymers (PIMs) can exhibit analogous behaviour to that of conventional microporous materials, but, in addition, may be processed into convenient forms for use as membranes. The excellent performance of these membranes for gas separation and pervaporation illustrates the unique character of PIMs and suggests immediate technological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA