Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
J Med Virol ; 96(9): e29886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246064

RESUMEN

Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.


Asunto(s)
Antivirales , COVID-19 , ADN Mitocondrial , Mitocondrias , Virosis , Humanos , Antivirales/uso terapéutico , Mitocondrias/efectos de los fármacos , ADN Mitocondrial/genética , COVID-19/virología , Virosis/tratamiento farmacológico , Virosis/virología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
2.
J Transl Med ; 22(1): 495, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796496

RESUMEN

BACKGROUND: The pathophysiology of toxico-nutritional optic neuropathies remains debated, with no clear understanding of the respective roles played by the direct alcohol toxicity, smoking and the often associated vitamin deficiencies, which are risk factors for optic neuropathy. Our aim was to investigate genetic susceptibility in patients with bilateral infraclinical optic neuropathy associated with chronic alcohol use disorder. METHODS: This retrospective cohort study included 102 visually asymptomatic patients with documented alcohol use disorder from a French reference center. Optic neuropathy was identified with optical coherence tomography (OCT), after which genetic susceptibility in the group of affected patients was investigated. Genetic testing was performed using panel sequencing of 87 nuclear genes and complete mitochondrial DNA sequencing. RESULTS: Optic neuropathy was detected in 36% (37/102) of the included patients. Genetic testing of affected patients disclosed two patients (2/30, 6.7%) with optic neuropathy associated with pathogenic variants affecting the SPG7 gene and five patients (5/30, 16.7%) who harbored variants of uncertain significance close to probable pathogenicity in the genes WFS1, LOXL1, MMP19, NR2F1 and PMPCA. No pathogenic mitochondrial DNA variants were found in this group. CONCLUSIONS: OCT can detect presence of asymptomatic optic neuropathy in patients with chronic alcohol use disorder. Furthermore, genetic susceptibility to optic neuropathy in this setting is found in almost a quarter of affected patients. Further studies may clarify the role of preventative measures in patients who might be predisposed to avoidable visual loss and blindness.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades del Nervio Óptico , Humanos , Masculino , Femenino , Enfermedades del Nervio Óptico/genética , Persona de Mediana Edad , Adulto , Alcoholismo/genética , Alcoholismo/complicaciones , Anciano , Estudios Retrospectivos
3.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703036

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico , Francia , Niño , Adulto , Masculino , Femenino , Adolescente , Persona de Mediana Edad , Preescolar , Estudios de Cohortes , Adulto Joven , Lactante , Secuenciación del Exoma , Anciano , Secuenciación Completa del Genoma , ADN Mitocondrial/genética , Diagnóstico Diferencial
4.
Am J Clin Nutr ; 120(1): 217-224, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38797248

RESUMEN

BACKGROUND: The absorption of vitamin B12 is hindered in pernicious anemia (PA) owing to intrinsic factor deficiency. Traditionally, intramuscular vitamin B12 injections were the standard treatment, bypassing the impaired absorption. Although there is potential for oral vitamin B12 supplementation through passive enteral absorption, it is not commonly prescribed in PA owing to limited studies assessing its efficacy. OBJECTIVES: We aimed to assess the efficacy of oral vitamin B12 supplementation in PA. METHODS: We enrolled participants diagnosed with incident vitamin B12 deficiency related to PA. The diagnosis of PA was based on the presence of classical immune gastritis and of anti-intrinsic factor and/or antiparietal cell antibodies. To evaluate the vitamin B12 status, we measured total plasma vitamin B12, plasma homocysteine, and plasma methylmalonic acid (pMMA) concentration and urinary methylmalonic acid-to-creatinine ratio. Participants were treated with oral cyanocobalamin at a dosage of 1000 µg/d throughout the study duration. Clinical and biological vitamin B12 deficiency related features were prospectively and systematically assessed over the 1-y study duration. RESULTS: We included 26 patients with vitamin B12 deficiency revealing PA. Following 1 mo of oral vitamin B12 supplementation, 88.5% of patients were no longer deficient in vitamin B12, with significant improvement of plasma vitamin B12 [407 (297-485) compared with 148 (116-213) pmol/L; P < 0.0001], plasma homocysteine [13.5 (10.9-29.8) compared with 18.6 (13.7-46.8) µmol/L; P < 0.0001], and pMMA [0.24 (0.16-0.38) compared with 0.56 (0.28-1.09) pmol/L; P < 0.0001] concentrations than those at baseline. The enhancement of these biological parameters persisted throughout the 12-month follow-up, with no patients showing vitamin B12 deficiency by the end of the follow-up period. The median time to reverse initial vitamin B12 deficiency abnormalities ranged from 1 mo for hemolysis to 4 mo for mucosal symptoms. CONCLUSIONS: Oral supplementation with 1000 µg/d of cyanocobalamin has been shown to improve vitamin B12 deficiency in PA.


Asunto(s)
Anemia Perniciosa , Suplementos Dietéticos , Deficiencia de Vitamina B 12 , Vitamina B 12 , Humanos , Vitamina B 12/sangre , Vitamina B 12/administración & dosificación , Vitamina B 12/uso terapéutico , Anemia Perniciosa/tratamiento farmacológico , Femenino , Masculino , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Deficiencia de Vitamina B 12/tratamiento farmacológico , Administración Oral , Ácido Metilmalónico/sangre , Homocisteína/sangre , Estudios de Cohortes
6.
Brain ; 147(1): 91-99, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37804319

RESUMEN

Pathogenic variants in the MFN2 gene are commonly associated with autosomal dominant (CMT2A2A) or recessive (CMT2A2B) Charcot-Marie-Tooth disease, with possible involvement of the CNS. Here, we present a case of severe antenatal encephalopathy with lissencephaly, polymicrogyria and cerebellar atrophy. Whole genome analysis revealed a homozygous deletion c.1717-274_1734 del (NM_014874.4) in the MFN2 gene, leading to exon 16 skipping and in-frame loss of 50 amino acids (p.Gln574_Val624del), removing the proline-rich domain and the transmembrane domain 1 (TM1). MFN2 is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial fusion, shaping large mitochondrial networks within cells. In silico modelling showed that the loss of the TM1 domain resulted in a drastically altered topological insertion of the protein in the mitochondrial outer membrane. Fetus fibroblasts, investigated by fluorescent cell imaging, electron microscopy and time-lapse recording, showed a sharp alteration of the mitochondrial network, with clumped mitochondria and clusters of tethered mitochondria unable to fuse. Multiple deficiencies of respiratory chain complexes with severe impairment of complex I were also evidenced in patient fibroblasts, without involvement of mitochondrial DNA instability. This is the first reported case of a severe developmental defect due to MFN2 deficiency with clumped mitochondria.


Asunto(s)
Encefalopatías , Enfermedad de Charcot-Marie-Tooth , Embarazo , Humanos , Femenino , Homocigoto , Mutación/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Eliminación de Secuencia , Mitocondrias/metabolismo , Encefalopatías/genética , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
7.
Biomed Chromatogr ; 38(3): e5799, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041149

RESUMEN

The management of life-threatening complications in patients with sickle cell disease (SCD) requires an accurate and reproducible quantification of haemoglobin A (HbA) and S (HbS) with a short turnaround time and 24-7 availability. We propose a novel method for quantifying HbA and HbS using the glycated haemoglobin (HbA1c) assay on a Tosoh HLC-723G8 (G8) analyser in variant mode. HbA and HbS results obtained using our method highly correlated with results obtained using a reference method (r > 0.99 for 124 samples of patients with SCD or sickle cell trait). Our method met laboratory requirements for linearity (coefficient of variation [CV] and bias <5%), between-run and within-run reproducibility (CV <10%) and carryover (<0.5%) over the range of HbS and HbA values expected in a therapeutic context. Using the G8 analyser in variant mode is viable for monitoring HbA and HbS concentrations in dire situations. This method is easy to use, quick (1.6 min per sample), and automatable and produces highly reproducible results without significant bias. Finally, it does not require modifications to the analytical pipeline recommended by the supplier, enabling a 24-7 availability without disrupting routine monitoring of HbA1c in the laboratory.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina A , Hemoglobina Falciforme , Humanos , Hemoglobina Glucada , Reproducibilidad de los Resultados
8.
Mali méd. (En ligne) ; 39(2): 50-57, 2024. figures, tables
Artículo en Francés | AIM (África) | ID: biblio-1570373

RESUMEN

Objectif : Le but de cette étude était de déterminer une association entre la carence en vitamine D et le cancer du sein avancé chez une population de femmes maliennes. Méthodes : Il s'agit d'une étude prospective transversale, menée pendant 4 mois, d'Août à novembre 2021. Les dosages ont été réalisés au laboratoire Rodolphe Mérieux. Résultats : Nous avons inclus 77 femmes diagnostiquées pour un cancer du sein avancé. L'âge moyen de la population étudiée était de 48,51 ± 13,02 ans. Les concentrations plasmatiques moyennes de 25(OH)D étaient respectivement de 20,65 ± 6,76 et 18,89 ± 6,12 ng/ml (p=0,274) dans les groupes III et IV. Le stade III était majoritaire avec 67,5% et il n'y avait pas de différences significatives avec le stade IV pour les marqueurs biologiques phospho-calciques. Nos résultats ont montré une carence en vitamine D plus importante au stade III qu'au stade IV, avec p=0.782. Le modèle de régression logistique a montré une diminution significative du risque relatif de cancer du sein avancé selon les quartiles de vitamine D (p=0.039). Il n'y avait pas d'association avec la calcémie, la phosphatémie, la créatinine plasmatique et le débit de filtration glomérulaire (DFG) (p>0,05). Conclusions : Nos résultats suggèrent une association entre la vitamine D et le risque de cancer du sein avancé aux stades III et IV. Cependant, d'autres études sont nécessaires pour confirmer le rôle de la vitamine D dans l'évolution du cancer du sein féminin aux stades avancés


Aims: The aim of this study was to determine the association between vitamin D deficiency and advanced BC in a Malian women population. Methods: This is a prospective cross-sectional study, conducted during 4 months, from August 2021 to November 2021. The assays were performed on immunodiagnostic and biochemistry devices in Rodolphe Merieux Laboratory. Results: We included 77 women diagnosed with advanced breast cancer. The mean age of the study population was 48.51 ± 13.02 years. The mean plasma concentrations of 25(OH)D were 20.65 ± 6.76 ng/ml and 18.89 ± 6.12 ng/ml (p=0.274) in groups III and IV, respectively. Stage III was predominant, comprising 67.5% of the cases, and there were no significant differences between stages III and IV regarding phospho-calcium biological markers. Our results showed a greater deficiency in vitamin D at stage III compared to stage IV, with p=0.782. The logistic regression model demonstrated a significant decrease in the relative risk of advanced breast cancer across the quartiles of vitamin D (p=0.039). There was no association with serum calcium, phosphate, plasma creatinine, and glomerular filtration rate (GFR) (p>0.05). Conclusions: Our findings show an decrease of the risk of breast cancer about vitamin D levels in our population. These results suggest an association between vitamin D and the risk of advanced breast cancer. Further studies are needed to determine the mechanism of vitamin D deficiency in advanced breast cancer.


Asunto(s)
Humanos , Masculino , Femenino
9.
Diagnostics (Basel) ; 13(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132250

RESUMEN

(1) Background: Breast cancer is the most prevalent cancer found in women in Mali. The aim of the current study was to determine the association between metabolites circulating in the blood, 25(OH)D and 1,25(OH)2D, and vitamin D levels with the risk of breast cancer in Malian women. (2) Methods: We conducted a prospective case-control study from August 2021 to March 2022. Control subjects were matched to cases according to age (within 5 years). The patients' clinical stage was determined by the oncologist according to the tumour-nodes-metastasis (TNM) classification system. (3) Results: We observed no differences in the mean 25(OH)D (p = 0.221) and 1,25(OH)2D (p = 0.285) between cases and controls. However, our findings indicate a more pronounced inverse association in the first level of plasma 25(OH)D, while the risk function decreases at higher levels. This observation takes strength with 1,25(OH)2D by a significant association between the first quartile and breast cancer as a risk factor (p = 0.03; OR = 71.84; CI: 1.36-3785.34). (4) Conclusions: These outcomes showed a possible association between 25(OH)D and 1,25(OH)2D in decreasing the risk of breast cancer.

10.
Front Neurol ; 14: 1266686, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020658

RESUMEN

In this case study, we report the case of a 13-year-old girl with citrullinemia type 1 (MIM #215700), an autosomal recessive inherited disorder of the urea cycle, which was confirmed by the identification of a homozygous pathogenic variant in the argininosuccinate synthetase 1 (ASS1) gene. However, the patient presented abnormal hyperkinetic movements with global developmental delay and clinical signs that were not fully consistent with those of citrullinemia type 1 or with those of her siblings with isolated citrullinemia type 1. Exome sequencing showed the presence of a de novo heterozygous pathogenic variant in the adenylate cyclase type 5 (ADCY5) gene. The variant confirmed the overlap with the so-called ADCY5-related dyskinesia with orofacial involvement, which is autosomal dominant (MIM #606703), a disorder disrupting the enzymatic conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). In addition to the citrullinemia-related low-protein diet and arginine supplementation, the identification of this second disease led to the introduction of a treatment with caffeine, which considerably improved the dyskinesia neurological picture. In conclusion, this case highlights the importance of clinical-biological confrontation for the interpretation of genetic variants, as one hereditary metabolic disease may hide another with therapeutic consequences. Summary: This article reports the misleading superposition of two inherited metabolic diseases, showing the importance of clinical-biological confrontation in the interpretation of genetic variants.

11.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895852

RESUMEN

BACKGROUND: Myocardial infarction is one of the leading causes of mortality worldwide; hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA), a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects. However, the mechanisms by which KYNA may be protective are still unclear. The current study addressed this issue by investigating KYNA's cardioprotective effect in the context of myocardial ischemia/reperfusion. METHODS: H9C2 cells and rats were exposed to hypoxia/reoxygenation or myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities were measured using spectrophotometry. Protein expression was evaluated by Western blot, and mRNA levels by RT-qPCR. RESULTS: KYNA treatment significantly reduced H9C2-relative cell death as well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether, KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo models. CONCLUSION: Here we show that KYNA-mediated cardioprotection was associated with enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA's cardioprotective mechanisms is necessary to identify promising novel therapeutic targets and their translation into the clinical arena.

13.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569376

RESUMEN

Cardiac complications are frequently found following a stroke in humans whose pathophysiological mechanism remains poorly understood. We used machine learning to analyse a large set of data from a metabolipidomic study assaying 630 metabolites in a rat stroke model to investigate metabolic changes affecting the heart within 72 h after a stroke. Twelve rats undergoing a stroke and 28 rats undergoing the sham procedure were investigated. A plasmatic signature consistent with the literature with notable lipid metabolism remodelling was identified. The post-stroke heart showed a discriminant metabolic signature, in comparison to the sham controls, involving increased collagen turnover, increased arginase activity with decreased nitric oxide synthase activity as well as an altered amino acid metabolism (including serine, asparagine, lysine and glycine). In conclusion, these results demonstrate that brain injury induces a metabolic remodelling in the heart potentially involved in the pathophysiology of stroke heart syndrome.

14.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37460898

RESUMEN

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Asunto(s)
Células Endoteliales , Infarto del Miocardio , Humanos , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Infarto del Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal , Vasodilatación , Animales , Ratones
15.
Front Immunol ; 14: 1205616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520535

RESUMEN

Introduction: Assessing labial salivary gland exocrinopathy is a cornerstone in primary Sjögren's syndrome. Currently this relies on the histopathologic diagnosis of focal lymphocytic sialadenitis and computing a focus score by counting lym=phocyte foci. However, those lesions represent advanced stages of primary Sjögren's syndrome, although earlier recognition of primary Sjögren's syndrome and its effective treatment could prevent irreversible damage to labial salivary gland. This study aimed at finding early biomarkers of primary Sjögren's syndrome in labial salivary gland combining metabolomics and machine-learning approaches. Methods: We used a standardized targeted metabolomic approach involving high performance liquid chromatography coupled with mass spectrometry among newly diagnosed primary Sjögren's syndrome (n=40) and non- primary Sjögren's syndrome sicca (n=40) participants in a prospective cohort. A metabolic signature predictive of primary Sjögren's syndrome status was explored using linear (logistic regression with elastic-net regularization) and non-linear (random forests) machine learning architectures, after splitting the data set into training, validation, and test sets. Results: Among 126 metabolites accurately measured, we identified a discriminant signature composed of six metabolites with robust performances (ROC-AUC = 0.86) for predicting primary Sjögren's syndrome status. This signature included the well-known immune-metabolite kynurenine and five phospholipids (LysoPC C28:0; PCaa C26:0; PCaaC30:2; PCae C30:1, and PCaeC30:2). It was split into two main components: the first including the phospholipids was related to the intensity of lymphocytic infiltrates in salivary glands, while the second represented by kynurenine was independently associated with the presence of anti-SSA antibodies in participant serum. Conclusion: Our results reveal an immuno-lipidomic signature in labial salivary gland that accurately distinguishes early primary Sjögren's syndrome from other causes of sicca symptoms.


Asunto(s)
Síndrome de Sjögren , Humanos , Estudios Prospectivos , Quinurenina , Glándulas Salivales/patología , Glándulas Salivales Menores/patología
17.
Brain ; 146(2): 455-460, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36317462

RESUMEN

Hereditary optic neuropathies are caused by the degeneration of retinal ganglion cells whose axons form the optic nerves, with a consistent genetic heterogeneity. As part of our diagnostic activity, we retrospectively evaluated the combination of Leber hereditary optic neuropathy mutations testing with the exon sequencing of 87 nuclear genes on 2186 patients referred for suspected hereditary optic neuropathies. The positive diagnosis rate in individuals referred for Leber hereditary optic neuropathy testing was 18% (199/1126 index cases), with 92% (184/199) carrying one of the three main pathogenic variants of mitochondrial DNA (m.11778G>A, 66.5%; m.3460G>A, 15% and m.14484T>C, 11%). The positive diagnosis rate in individuals referred for autosomal dominant or recessive optic neuropathies was 27% (451/1680 index cases), with 10 genes accounting together for 96% of this cohort. This represents an overall positive diagnostic rate of 30%. The identified top 10 nuclear genes included OPA1, WFS1, ACO2, SPG7, MFN2, AFG3L2, RTN4IP1, TMEM126A, NR2F1 and FDXR. Eleven additional genes, each accounting for less than 1% of cases, were identified in 17 individuals. Our results show that 10 major genes account for more than 96% of the cases diagnosed with our nuclear gene panel.


Asunto(s)
Atrofia Óptica Autosómica Dominante , Atrofia Óptica Hereditaria de Leber , Enfermedades del Nervio Óptico , Humanos , Atrofia Óptica Hereditaria de Leber/genética , Estudios Retrospectivos , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Enfermedades del Nervio Óptico/genética , Mutación/genética , ADN Mitocondrial/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Proteínas Portadoras/genética , Proteínas Mitocondriales/genética , Proteínas de la Membrana/genética
18.
Antioxidants (Basel) ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38247484

RESUMEN

Metabolomics is a powerful data-driven tool for in-depth biological phenotyping that could help identify the specific metabolic profile of cryptogenic strokes, for which no precise cause has been identified. We performed a targeted quantitative metabolomics study in West African patients who had recently suffered an ischemic stroke, which was either cryptogenic (n = 40) or had a clearly identified cause (n = 39), compared to a healthy control group (n = 40). Four hundred fifty-six metabolites were accurately measured. Multivariate analyses failed to reveal any metabolic profile discriminating between cryptogenic ischemic strokes and those with an identified cause but did show superimposable metabolic profiles in both groups, which were clearly distinct from those of healthy controls. The blood concentrations of 234 metabolites were significantly affected in stroke patients compared to controls after the Benjamini-Hochberg correction. Increased methionine sulfoxide and homocysteine concentrations, as well as an overall increase in saturation of fatty acids, were indicative of acute oxidative stress. This signature also showed alterations in energetic metabolism, cell membrane integrity, monocarbon metabolism, and neurotransmission, with reduced concentrations of several metabolites known to be neuroprotective. Overall, our results show that cryptogenic strokes are not pathophysiologically distinct from ischemic strokes of established origin, and that stroke leads to intense metabolic remodeling with marked oxidative and energetic stresses.

19.
Metabolites ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557304

RESUMEN

Male infertility has increased in the last decade. Pathophysiologic mechanisms behind extreme oligospermia (EO) are not yet fully understood. In new "omics" approaches, metabolomic can offer new information and help elucidate these mechanisms. We performed a metabolomics study of the seminal fluid (SF) in order to understand the mechanisms implicated in EO. We realized a targeted quantitative analysis using high performance liquid chromatography and mass spectrometry to compare the SF metabolomic profile of 19 men with EO with that of 22 men with a history of vasectomy (V) and 20 men with normal semen parameters (C). A total of 114 metabolites were identified. We obtained a multivariate OPLS-DA model discriminating the three groups. Signatures show significantly higher levels of amino acids and polyamines in C group. The sum of polyunsaturated fatty acids and free carnitine progressively decrease between the three groups (C > EO > V) and sphingomyelins are significantly lower in V group. Our signature characterizing EO includes metabolites already linked to infertility in previous studies. The similarities between the signatures of the EO and V groups are clear evidence of epididymal dysfunction in the case of testicular damage. This study shows the complexity of the metabolomic dysfunction occurring in the SF of EO men and underlines the importance of metabolomics in understanding male infertility.

20.
PLoS One ; 17(10): e0272097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194565

RESUMEN

While lactate shuttle theory states that glial cells metabolize glucose into lactate to shuttle it to neurons, how glial cells support axonal metabolism and function remains unclear. Lactate production is a common occurrence following anaerobic glycolysis in muscles. However, several other cell types, including some stem cells, activated macrophages and tumor cells, can produce lactate in presence of oxygen and cellular respiration, using Pyruvate Kinase 2 (PKM2) to divert pyruvate to lactate dehydrogenase. We show here that PKM2 is also upregulated in myelinating Schwann cells (mSC) of mature mouse sciatic nerve versus postnatal immature nerve. Deletion of this isoform in PLP-expressing cells in mice leads to a deficit of lactate in mSC and in peripheral nerves. While the structure of myelin sheath was preserved, mutant mice developed a peripheral neuropathy. Peripheral nerve axons of mutant mice failed to maintain lactate homeostasis upon activity, resulting in an impaired production of mitochondrial ATP. Action potential propagation was not altered but axonal mitochondria transport was slowed down, muscle axon terminals retracted and motor neurons displayed cellular stress. Additional reduction of lactate availability through dichloroacetate treatment, which diverts pyruvate to mitochondrial oxidative phosphorylation, further aggravated motor dysfunction in mutant mice. Thus, lactate production through PKM2 enzyme and aerobic glycolysis is essential in mSC for the long-term maintenance of peripheral nerve axon physiology and function.


Asunto(s)
Axones , Piruvato Quinasa , Adenosina Trifosfato/metabolismo , Animales , Axones/metabolismo , Glucosa/metabolismo , Glucólisis , Lactato Deshidrogenasas , Lactatos/metabolismo , Ratones , Vaina de Mielina/metabolismo , Oxígeno/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvatos/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA