RESUMEN
Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.
Asunto(s)
Aedes/enzimología , Dengue/parasitología , Ambiente , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas/efectos de los fármacos , Nitrilos/toxicidad , Piretrinas/toxicidad , Temefós/toxicidad , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Aedes/efectos de los fármacos , Aedes/genética , Envejecimiento/efectos de los fármacos , Animales , Bioensayo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes de Insecto/genética , Estudios de Asociación Genética , Genotipo , Geografía , Insectos Vectores/enzimología , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Larva/efectos de los fármacos , Larva/genética , Martinica , Mutación/genética , Fenotipo , Dinámica Poblacional , Análisis de Componente Principal , Estándares de Referencia , Transcripción Genética/efectos de los fármacosRESUMEN
BACKGROUND: The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. RESULTS: The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. CONCLUSION: These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide.