RESUMEN
Fuzzy-trace theory predicts that decisionmakers process numerical information about risk at multiple levels in parallel: the simplest level, nominal (categorical some-none) gist, and at more fine-grained levels, involving relative comparison (ordinal less-more gist) and exact quantities (verbatim representations). However, little is known about how individual differences in these numerical representations relate to judgments and decisions, especially involving health tradeoffs and relative risks. To investigate these differences, we administered measures of categorical and ordinal gist representations of number, objective numeracy, and intelligence in two studies (Ns = 978 and 956). In both studies, categorical and ordinal gist representations of number predicted risk judgments and decisions beyond objective numeracy and intelligence. Participants with higher scores in categorical gist were more likely to choose options to avoid cancer recurrence risks; those who were higher in ordinal gist of numbers were more likely to discriminate relative risk of skin cancer; and those with higher scores in objective numeracy were more likely to choose options that were numerically superior overall in terms of relative risk of skin cancer and of genetic risks of breast cancer (e.g., lower numerical probability of cancer). Results support parallel-processing models that assume multiple representations of numerical information about risk, which vary in precision, and illustrate how individual differences in numerical representations are relevant to tradeoffs and risk comparisons in health decisions. These representations cannot be reduced to one another and explain psychological variations in risk processing that go beyond low versus high levels of objective numeracy.
Asunto(s)
Neoplasias Cutáneas , Humanos , Toma de Decisiones , Individualidad , Factores de Riesgo , Lógica DifusaRESUMEN
Despite evidence that individual differences in numeracy affect judgment and decision making, the precise mechanisms underlying how such differences produce biases and fallacies remain unclear. Numeracy scales have been developed without sufficient theoretical grounding, and their relation to other cognitive tasks that assess numerical reasoning, such as the Cognitive Reflection Test (CRT), has been debated. In studies conducted in Brazil and in the USA, we administered an objective Numeracy Scale (NS), Subjective Numeracy Scale (SNS), and the CRT to assess whether they measured similar constructs. The Rational-Experiential Inventory, inhibition (go/no-go task), and intelligence were also investigated. By examining factor solutions along with frequent errors for questions that loaded on each factor, we characterized different types of processing captured by different items on these scales. We also tested the predictive power of these factors to account for biases and fallacies in probability judgments. In the first study, 259 Brazilian undergraduates were tested on the conjunction and disjunction fallacies. In the second study, 190 American undergraduates responded to a ratio-bias task. Across the different samples, the results were remarkably similar. The results indicated that the CRT is not just another numeracy scale, that objective and subjective numeracy scales do not measure an identical construct, and that different aspects of numeracy predict different biases and fallacies. Dimensions of numeracy included computational skills such as multiplying, proportional reasoning, mindless or verbatim matching, metacognitive monitoring, and understanding the gist of relative magnitude, consistent with dual-process theories such as fuzzy-trace theory.