Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Neurodegener ; 10: 62, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26590557

RESUMEN

BACKGROUND: L-methionine, the principal sulfur-containing amino acid in proteins, plays critical roles in cell physiology as an antioxidant and in the breakdown of fats and heavy metals. Previous studies suggesting the use of L-methionine as a treatment for depression and other diseases indicate that it might also improve memory and propose a role in brain function. However, some evidence indicates that an excess of methionine can be harmful and can increase the risk of developing Type-2 diabetes, heart diseases, certain types of cancer, brain alterations such as schizophrenia, and memory impairment. RESULTS: Here, we report the effects of an L-methionine-enriched diet in wild-type mice and emphasize changes in brain structure and function. The animals in our study presented 1) higher levels of phosphorylated tau protein, 2) increased levels of amyloid-ß (Aß)-peptides, including the formation of Aß oligomers, 3) increased levels of inflammatory response,4) increased oxidative stress, 5) decreased level of synaptic proteins, and 6) memory impairment and loss. We also observed dysfunction of the Wnt signaling pathway. CONCLUSION: Taken together, the results of our study indicate that an L-methionine-enriched diet causes neurotoxic effects in vivo and might contribute to the appearance of Alzheimer's-like neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Conducta Animal , Encéfalo/metabolismo , Neuronas/metabolismo , Vía de Señalización Wnt , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Conducta Animal/fisiología , Femenino , Metionina/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Fosforilación , Vía de Señalización Wnt/fisiología
2.
Biochim Biophys Acta ; 1852(12): 2630-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26391254

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by hallmarks that include an accumulation of amyloid-ß peptide (Aß), inflammation, oxidative stress and synaptic dysfunction, which lead to a decrease in cognitive function. To date, the onset and progression of AD have been associated with pathologies such as hypertension and diabetes. Hypertension, a disease with a high incidence worldwide, is characterized by a chronic increase in blood pressure. Interestingly, this disease has a close relationship to the eating behavior of patients because high Na(+) intake is a significant risk factor for hypertension. In fact, a decrease in Na(+) consumption, along with an increase in K(+) intake, is a primary non-pharmacological approach to preventing hypertension. In the present work, we examined whether an increase in K(+) intake affects the expression of certain neuropathological markers or the cognitive performance of a murine model of AD. We observed that an increase in K(+) intake leads to a change in the aggregation pattern of the Aß peptide, a partial decrease in some epitopes of tau phosphorylation and improvement in the cognitive performance. The recovery in cognitive performance was correlated with a significant improvement in the generation of long-term potentiation. We also observed a decrease in markers related to inflammation and oxidative stress such as glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6) and 4-hydroxynonenal (4-HNE). Together, our data support the idea that changes in diet, such as an increase in K(+) intake, may be important in the prevention of AD onset as a non-pharmacological therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA