Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(1): e85106, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454799

RESUMEN

With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.


Asunto(s)
Cruzamiento/economía , Cruzamiento/métodos , Internacionalidad , Oryza/economía , Oryza/crecimiento & desarrollo , Amilosa/metabolismo , Clima , Odorantes , Oryza/anatomía & histología , Oryza/metabolismo , Temperatura
2.
J Agric Food Chem ; 60(46): 11576-85, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23009566

RESUMEN

Elevated proportions of amylose in cereals are commonly associated with either the loss of starch branching or starch synthase activity. Goami 2 is a high-amylose mutant of the temperate japonica rice variety Ilpumbyeo. Genotyping revealed that Goami 2 and Ilpumbyeo carry the same alleles for starch synthase IIa and granule-bound starch synthase I genes. Analyses of granule-bound proteins revealed that SSI and SSIIa accumulate inside the mature starch granules of Goami 2, which is similar to the amylose extender mutant IR36ae. However, unlike the amylose extender mutants, SBEIIb was still detectable inside the starch granules of Goami 2. Detection of SBEIIb after protein fractionation revealed that most of the SBEIIb in Goami 2 accumulates inside the starch granules, whereas most of it accumulates at the granule surface in Ilpumbyeo. Exhaustive mass spectrometric characterisations of granule-bound proteins failed to detect any peptide sequence mutation or major post-translational modifications in Goami 2. Moreover, the signal peptide was found to be cleaved normally from the precursor protein, and there is no apparent N-linked glycosylation. Finally, no difference was found in the SBEIIb structural gene sequence of Goami 2 compared with Ilpumbyeo. In contrast, a G-to-A mutation was detected in the SBEIIb gene of IR36ae located at the splice site between exon and intron 11, which could potentially introduce a premature stop codon and produce a truncated form of SBEIIb. It is suggested that the mutation responsible for producing high amylose in Goami 2 is not due to a defect in SBEIIb gene as was observed in IR36ae, even though it produces a phenotype analogous to the amylose extender mutation. Understanding the molecular genetic basis of this mutation will be important in identifying novel targets for increasing amylose and resistant starch contents in rice and other cereals.


Asunto(s)
Amilosa/metabolismo , Mutación , Oryza/enzimología , Proteínas de Plantas/genética , Almidón Sintasa/genética , Almidón/metabolismo , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Oryza/química , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Almidón Sintasa/metabolismo
3.
J Exp Bot ; 62(14): 4927-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21791436

RESUMEN

The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/genética , Regulación hacia Abajo , Secuencias Invertidas Repetidas , MicroARNs/genética , Oryza/enzimología , Proteínas de Plantas/genética , Interferencia de ARN , Enzima Ramificadora de 1,4-alfa-Glucano/química , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/química , MicroARNs/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Almidón/biosíntesis , Almidón/química
4.
Funct Plant Biol ; 36(12): 1037-1045, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32688715

RESUMEN

High temperature increases the amount of chalk in rice (Oryza sativa L.) grains, which causes grains to break during polishing, lowering the amount of rice for consumption. Here, we examined the effect of elevated temperature on substrate supply to the panicle, the capacity of the panicle to produce edible grains, and underlying factors affecting yield of edible grain in two varieties. During grain-filling, substrate supply followed a bell shaped curve, and high temperature significantly shortened supply time. The rate of grain-filling did not change and paddy yield fell in both varieties. In high temperature, yield loss in IR8 was due to lighter grains relative to those grown in cool temperature, but in IR60, it was due to the early sacrifice of 30% of the spikelets. The yield of edible rice was zero for IR8 and ~60% for IR60 for the high temperature treatments, and 100% for IR60 and 70% for IR8 in the cool temperature. IR60 differs from IR8 in regulation of substrate supply, architecture of the panicles and the capacity of the panicles to alter sink size in response to the stress and these factors may be responsible for the difference in edible rice in the two varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA