Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37568896

RESUMEN

RATIONALE AND OBJECTIVES: Post-COVID condition (PCC) is associated with long-term neuropsychiatric symptoms. Magnetic resonance imaging (MRI) in PCC examines the brain metabolism, connectivity, and morphometry. Such techniques are not easily available in routine practice. We conducted a scoping review to determine what is known about the routine MRI findings in PCC patients. MATERIALS AND METHODS: The PubMed database was searched up to 11 April 2023. We included cohort, cross-sectional, and before-after studies in English. Articles with only advanced MRI sequences (DTI, fMRI, VBM, PWI, ASL), preprints, and case reports were excluded. The National Heart, Lung, and Blood Institute and PRISMA Extension tools were used for quality assurance. RESULTS: A total of 7 citations out of 167 were included. The total sample size was 451 patients (average age 51 ± 8 years; 67% female). Five studies followed a single recovering cohort, while two studies compared findings between two severity groups. The MRI findings were perivascular spaces (47%), microbleeds (27%) and white matter lesions (10%). All the studies agreed that PCC manifestations are not associated with specific MRI findings. CONCLUSION: The results of the included studies are heterogeneous due to the low agreement on the types of MRI abnormalities in PCC. Our findings indicate that the routine brain MRI protocol has little value for long COVID diagnostics.

2.
Int J Med Inform ; 178: 105190, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37603940

RESUMEN

PURPOSE: replicability and generalizability of medical AI are the recognized challenges that hinder a broad AI deployment in clinical practice. Pulmonary nodes detection and characterization based on chest CT images is one of the demanded use cases for automatization by means of AI, and multiple AI solutions addressing this task are becoming available. Here, we evaluated and compared the performance of several commercially available radiological AI with the same clinical task on the same external datasets acquired before and during the pandemic of COVID-19. APPROACH: 5 commercially available AI models for pulmonary nodule detection were tested on two external datasets labelled by experts according to the intended clinical task. Dataset1 was acquired before the pandemic and did not contain radiological signs of COVID-19; dataset2 was collected during the pandemic and did contain radiological signs of COVID-19. ROC-analysis was applied separately for the dataset1 and dataset2 to select probability thresholds for each dataset separately. AUROC, sensitivity and specificity metrics were used to assess and compare the results of AI performance. RESULTS: Statistically significant differences in AUROC values were observed between the AI models for the dataset1. Whereas for the dataset2 the differences of AUROC values became statistically insignificant. Sensitivity and specificity differed statistically significantly between the AI models for the dataset1. This difference was insignificant for the dataset2 when we applied the probability threshold initially selected for the dataset1. An update of the probability threshold based on the dataset2 created statistically significant differences of sensitivity and specificity between AI models for the dataset2. For 3 out of 5 AI models, the update of the probability threshold was valuable to compensate for the degradation of AI model performances with the population shift caused by the pandemic. CONCLUSIONS: Population shift in the data is able to deteriorate differences of AI models performance. Update of the probability threshold together with the population shift seems to be valuable to preserve AI models performance without retraining them.


Asunto(s)
COVID-19 , Radiología , Humanos , Pandemias , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , Radiografía , Tomografía Computarizada por Rayos X
4.
Diagnostics (Basel) ; 12(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553204

RESUMEN

In this review, we focused on the applicability of artificial intelligence (AI) for opportunistic abdominal aortic aneurysm (AAA) detection in computed tomography (CT). We used the academic search system PubMed as the primary source for the literature search and Google Scholar as a supplementary source of evidence. We searched through 2 February 2022. All studies on automated AAA detection or segmentation in noncontrast abdominal CT were included. For bias assessment, we developed and used an adapted version of the QUADAS-2 checklist. We included eight studies with 355 cases, of which 273 (77%) contained AAA. The highest risk of bias and level of applicability concerns were observed for the "patient selection" domain, due to the 100% pathology rate in the majority (75%) of the studies. The mean sensitivity value was 95% (95% CI 100-87%), the mean specificity value was 96.6% (95% CI 100-75.7%), and the mean accuracy value was 95.2% (95% CI 100-54.5%). Half of the included studies performed diagnostic accuracy estimation, with only one study having data on all diagnostic accuracy metrics. Therefore, we conducted a narrative synthesis. Our findings indicate high study heterogeneity, requiring further research with balanced noncontrast CT datasets and adherence to reporting standards in order to validate the high sensitivity value obtained.

5.
J Clin Med ; 11(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160121

RESUMEN

Computed tomography (CT) has been an essential diagnostic tool during the COVID-19 pandemic. The study aimed to develop an optimal CT protocol in terms of safety and reliability. For this, we assessed the inter-observer agreement between CT and low-dose CT (LDCT) with soft and sharp kernels using a semi-quantitative severity scale in a prospective study (Moscow, Russia). Two consecutive scans with CT and LDCT were performed in a single visit. Reading was performed by ten radiologists with 3-25 years' experience. The study included 230 patients, and statistical analysis showed LDCT with a sharp kernel as the most reliable protocol (percentage agreement 74.35 ± 43.77%), but its advantage was marginal. There was no significant correlation between radiologists' experience and average percentage agreement for all four evaluated protocols. Regarding the radiation exposure, CTDIvol was 3.6 ± 0.64 times lower for LDCT. In conclusion, CT and LDCT with soft and sharp reconstructions are equally reliable for COVID-19 reporting using the "CT 0-4" scale. The LDCT protocol allows for a significant decrease in radiation exposure but may be restricted by body mass index.

6.
Biochem Biophys Res Commun ; 522(4): 1037-1040, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31813549

RESUMEN

Oligonucleotide RA36 contains two G-quadruplex modules with thrombin binding aptamer sequence GGTTGGTGTGGTTGG. Each of the modules potentially can bind thrombin while differing in functional activity. Despite that, previously published studies report a single dissociation constant for the thrombin:RA36 complex, which value varies widely. Here we address this discrepancy using electrophoretic mobility shift assay. Our results reveal that the interaction between RA36 and thrombin is a two-stage process. The two modules have different affinities for thrombin, which explains the discrepancy in the published data.


Asunto(s)
Oligonucleótidos/metabolismo , Trombina/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Unión Proteica
7.
Molecules ; 24(2)2019 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-30642123

RESUMEN

Peptides are promising drug candidates due to high specificity and standout safety. Identification of bioactive peptides de novo using molecular docking is a widely used approach. However, current scoring functions are poorly optimized for peptide ligands. In this work, we present a novel algorithm PeptoGrid that rescores poses predicted by AutoDock Vina according to frequency information of ligand atoms with particular properties appearing at different positions in the target protein's ligand binding site. We explored the relevance of PeptoGrid ranking with a virtual screening of peptide libraries using angiotensin-converting enzyme and GABAB receptor as targets. A reasonable agreement between the computational and experimental data suggests that PeptoGrid is suitable for discovering functional leads.


Asunto(s)
Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/farmacología , Algoritmos , Animales , Simulación por Computador , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Pez Cebra
8.
Nucleic Acids Res ; 46(3): 1102-1112, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29267876

RESUMEN

Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.


Asunto(s)
ADN/química , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Simulación de Dinámica Molecular , Emparejamiento Base , Secuencia de Bases , Microscopía por Crioelectrón , ADN/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/química , Humanos , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico
9.
Nucleic Acid Ther ; 26(5): 299-308, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27159247

RESUMEN

Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K+, Na+, NH4+, Ba2+, and Sr2+; on the contrary, Mn2+ was coordinated in the grooves, outside the G-quadruplex. K+ or Na+ coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K+ coordination provided the well-known high inhibitory activity of the aptamer, whereas Na+ coordination supported low activity. Although NH4+ coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba2+ and Sr2+ coordination. Mn2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different sequence of loops in the G-quadruplex module provided an equilibrium of antiparallel and parallel G-quadruplexes that shifted with cation binding. In conclusion, structures of G-quadruplex aptamers are flexible enough and are fine-tuned with different cation coordination.


Asunto(s)
Anticoagulantes/química , Aptámeros de Nucleótidos/química , Complejos de Coordinación/química , G-Cuádruplex , Trombina/química , Amoníaco/química , Bario/química , Sitios de Unión , Cationes Bivalentes , Cationes Monovalentes , Cinética , Manganeso/química , Potasio/química , Unión Proteica , Sodio/química , Estroncio/química , Trombina/antagonistas & inhibidores
10.
J Photochem Photobiol B ; 133: 140-4, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24727406

RESUMEN

Two novel bis(chromophoric) dyads ABPI-NI1 and ABPI-NI2 containing 1,8-naphthalimide and bacteriopurpurinimide units linked by p-phenylene-methylene (ABPI-NI1) and pentamethylene (ABPI-NI2) spacers were prepared to test their ability to be used in the design of effective agents for both photodynamic therapy (PDT) and fluorescent tumor imaging. Photophysical studies revealed that the emission from the naphthalimide chromophore in both conjugates was partially quenched due to resonance energy transfer between the photoactive components. Compound ABPI-NI2 with more sterically flexible oligomethylene group demonstrated higher fluorescence intensity as compared with that for ABPI-NI1.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Naftalimidas/química , Porfirinas/química , Humanos , Naftalimidas/síntesis química , Naftalimidas/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Porfirinas/síntesis química , Porfirinas/uso terapéutico , Teoría Cuántica
11.
J Biol Chem ; 288(22): 15888-99, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23585571

RESUMEN

Human LYNX1, belonging to the Ly6/neurotoxin family of three-finger proteins, is membrane-tethered with a glycosylphosphatidylinositol anchor and modulates the activity of nicotinic acetylcholine receptors (nAChR). Recent preparation of LYNX1 as an individual protein in the form of water-soluble domain lacking glycosylphosphatidylinositol anchor (ws-LYNX1; Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D'Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286, 10618-10627) revealed the attachment at the agonist-binding site in the acetylcholine-binding protein (AChBP) and muscle nAChR but outside it, in the neuronal nAChRs. Here, we obtained a series of ws-LYNX1 mutants (T35A, P36A, T37A, R38A, K40A, Y54A, Y57A, K59A) and examined by radioligand analysis or patch clamp technique their interaction with the AChBP, Torpedo californica nAChR and chimeric receptor composed of the α7 nAChR extracellular ligand-binding domain and the transmembrane domain of α1 glycine receptor (α7-GlyR). Against AChBP, there was either no change in activity (T35A, T37A), slight decrease (K40A, K59A), and even enhancement for the rest mutants (most pronounced for P36A and R38A). With both receptors, many mutants lost inhibitory activity, but the increased inhibition was observed for P36A at α7-GlyR. Thus, there are subtype-specific and common ws-LYNX1 residues recognizing distinct targets. Because ws-LYNX1 was inactive against glycine receptor, its "non-classical" binding sites on α7 nAChR should be within the extracellular domain. Micromolar affinities and fast washout rates measured for ws-LYNX1 and its mutants are in contrast to nanomolar affinities and irreversibility of binding for α-bungarotoxin and similar snake α-neurotoxins also targeting α7 nAChR. This distinction may underlie their different actions, i.e. nAChRs modulation versus irreversible inhibition, for these two types of three-finger proteins.


Asunto(s)
Proteínas de Peces/química , Proteínas Ligadas a GPI/química , Receptores Nicotínicos/química , Torpedo , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Animales , Bungarotoxinas/química , Bungarotoxinas/genética , Bungarotoxinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Humanos , Mutación Missense , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
12.
Nucleic Acids Res ; 39(22): 9789-802, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21893589

RESUMEN

A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.


Asunto(s)
Aptámeros de Nucleótidos/química , Cationes/química , G-Cuádruplex , Calorimetría , ADN/química , Simulación de Dinámica Molecular , Potasio/química , Sodio/química
13.
J Chem Theory Comput ; 6(10): 3003-14, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26616765

RESUMEN

The thrombin-binding aptamer (15-TBA) is a 15-mer DNA oligonucleotide with sequence d(GGTTGGTGTGGTTGG). 15-TBA folds into a quadruplex DNA (G-DNA) structure with two planar G-quartets connected by three single-stranded loops. The arrangement of the 15-TBA-thrombin complex is unclear, particularly with respect to the precise 15-TBA residues that interact with the thrombin structure. Our present understanding suggests either the 15-TBA single stranded loops containing sequential thymidines (TT) or alternatively a single-stranded loop, containing a guanine flanked by 2 thymidines (TGT), physically associates with thrombin protein. In the present study, the explicit solvent molecular dynamics (MD) simulation method was utilized to further analyze the 15-TBA-thrombin three-dimensional structure. Functional annotation of the loop residues was made with long simulations in the parmbsc0 force field. In total, the elapsed time of simulations carried out in this study exceeds 12 microseconds, substantially surpassing previous G-DNA simulation reports. Our simulations suggest that the TGT-loop function is to stabilize the structure of the aptamer, while the TT-loops participate in direct binding to thrombin. The findings of the present report advance our understanding of the molecular structure of the 15-TBA-thrombin structure further enabling the construction of biosensors for aptamer bases and the development of anticoagulant agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA