Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Tipo de estudio
Intervalo de año de publicación
1.
Sci Data ; 11(1): 963, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232034

RESUMEN

Dryocosmus kuriphilus, commonly known as the chestnut gall wasp, belongs to the family Cynipidae and is native to China. It is a highly invasive insect species causing serious damage to chestnut trees and has rapidly spread to various continents, including Europe, North America, and Oceania. The D. kuriphilus has become one of the important pests of chestnut plants in the world and is listed as a quarantine object by the European and Mediterranean Plant Protection Organization (EPPO). In this study, we used PacBio long reads, Illumina short reads, and Hi-C sequencing data to construct a chromosome-level assembly of the D. kuriphilus genome. The assembled genome includes 14,729 contigs with a total length of 2.28 Gb and a contig N50 of 0.8 Mb. With Hi-C technology, 2.17 Gb (95.02%) of contigs were anchored and oriented into the 10 pseudochromosomes with the scaffold N50 of 198.8 Mb and the scaffold N90 of 158.8 Mb. In total, 24,086 protein-coding genes were predicted in the assembled D. kuriphilus genome as the reference gene set. A total of 1.82 Gb repeats (occupying 79.7% of the genome), including 1.42 Gb of transposable elements and 0.40 Gb of tandem repeats, were identified in D. kuriphilus genome. In the evaluation of completeness, the BUSCO analysis determined a level of 98.1% completeness for the assembled genome sequences based on the Insecta database (OrthoDB version 10). The high-quality genome assembly of D. kuriphilus will not only provide a valuable reference for the study of its evolutionary history and genetic structure but also facilitate the research of host-pest interactions and invasiveness. Moreover, this genome assembly will promote in the development of effective management strategies to mitigate the economic and ecological impacts of this invasive pest on chestnut trees and ecosystems.


Asunto(s)
Avispas , Animales , Fagaceae/genética , Genoma de los Insectos , Avispas/genética
2.
Front Microbiol ; 14: 1084839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819029

RESUMEN

Introduction: The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods: Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results: Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion: This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.

3.
Insects ; 14(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36662007

RESUMEN

A trade-off between the capacity for flight and reproduction has been documented extensively in wing polymorphic female insects, thereby supporting the possible fitness gain due to flightlessness. However, most of these studies were conducted without considering the effect of flight behavior. In the present study, we assessed the flight duration by long-winged (LW) females in the cricket species Velarifictorus aspersus on different days after adult emergence and examined the effect of flight on ovarian development in LW females with different flight capacities. Our results showed that the flight capacity increased with age and peaked after 5 days. In addition, the flight capacity varied among individuals, where most LW females could only take short flights (sustained flight time < 10 min) and only a few individuals could take long flights (sustained flight time > 20 min). In LW female crickets demonstrating only short flights, repeated flying for 30 or 60 min significantly promoted reproductive development. However, in those capable of long flights, reproductive development was affected only after a flight of 60 min. The flight muscles degraded after the start of rapid reproduction in those with both short and long flights. Our results indicated that the critical flight time for switching from flight to reproduction varies among LW V. aspersus female crickets with polymorphic flight behavior.

4.
Front Microbiol ; 13: 865227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531293

RESUMEN

Wolbachia is a maternally inherited bacterium that is widely distributed among arthropods, in which it manipulates the reproduction of its hosts. Phage WO is the only bacteriophage known to infect Wolbachia, and may provide benefit to its host or arthropods. We screened for the presence of phage WO in Wolbachia-infected butterfly species for the first time, to investigate their diversity and evolutionary dynamics. All Wolbachia-infected butterfly species, including members of the families Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae, and Pieridae, were found to harbor phage WO. Interestingly, 84% of 19 butterfly species, which were infected with a single Wolbachia strain harbored high levels of multiple phage types (ranging from 3 to 17 types), another three species harbored one or two phage types. For Wolbachia strains (ST-41, ST-19, ST-125 and ST-374) shared among various butterfly species, their host insects all harbored multiple phage types, while two Wolbachia strains (ST-297 and ST-wPcau) were found to infect one butterfly species, whose insect hosts harbored a single phage type, suggesting that horizontal transfer of Wolbachia between insects increased the likelihood of exposure to phages, resulting in increased phage genetic diversity. Twelve horizontal transmission events of phage WO were found, which shared common phage WO types among different Wolbachia strains associated with butterflies. Most horizontal transfer events involved different Wolbachia supergroups (A and B). Horizontal acquisition of phage WO might also occur between eukaryotes without Wolbachia transfer. Furthermore, 22 putative recombination events were identified in 13 of 16 butterfly species which harbored multiple phage types. These results showed that horizontal transfer of Wolbachia caused it to be exposed to the phage gene pool, and that horizontal transmission of phage WO, as well as intragenic recombination were important dynamics for phage WO genome evolution, which effectively promoted the high level of phage WO diversity associated with butterflies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA