Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 166385, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625712

RESUMEN

Globally, marine heatwaves (MHWs) are becoming more common, more intense, and longer-lasting. They could have a large ecological and societal impact when compounded by low oxygen concentrations or high acidity. Here, using a high-resolution satellite product and reanalysis datasets, we investigated the characteristics of the MHW at northern Yellow Sea (NYS) during mid-summer 2018 and the driving mechanisms of large-scale atmospheric circulations. Results showed that the MHW in mid-summer 2018 (lasting from 26 July to 18 August 2018) had been the most intense since 1982, reaching an anomaly peak of 5.15 °C. For the 2018 MHW, the onset rate was 0.49 °C/day, indicating that the reaction window was relatively short and hard to take mitigation measures, while the decline rate was 0.19 °C/day, meaning the coping window was long and easy to push an already stressed system. The synergy of the two large-scale dynamic systems, i.e., the northward-shifted western north Pacific subtropical high (WNPSH) and the northeastward-expanded South Asia high (SAH), was likely responsible for establishment and maintenance of the hot-weather conditions. These high-pressure systems could result in stronger descending motion, less cloud cover, more solar radiation, and smaller wind speeds which in combination aggravated the MHW. We further found that the unprecedented MHW was actually also impacted by terrestrial heatwave. From 14 July to 15 August 2018, Northeast China was affected by an exceptionally long and intense atmospheric heat wave (AHW). The AHW had impacted on the MHW through warm advection transportation and may significantly contribute to the record-breaking intensity of the MHW, in addition to the impact of abnormal atmospheric circulations. Finally, we showed that a mass mortality of sea cucumbers in the study region during mid-summer 2018 was highly likely caused by the MHW through severe heat stress.

2.
ACS Omega ; 8(15): 13578-13592, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091376

RESUMEN

Water-based superamphiphobic coatings are environment-friendly, which have attracted tremendous attention recently, but the performances are severely limited by the dispersibility of hydrophobic particles. To solve the poor dispersibility of modified silica powder with hydrophobicity, silica dispersion was blended with polytetrafluoroethylene (PTFE) emulsion and modified aluminum tripolyphosphate (ATP) dispersion to successfully prepare water-based coatings. Multifunctional coatings were prepared by one-step spraying. It possessed good adhesion (grade 1), excellent antifouling, impact resistance, chemical stability (acid and alkali resistance for 96 h of immersion), and corrosion resistance (3.5 wt % NaCl solutions for 20 days). More importantly, the superamphiphobic coatings had high contact angles (CAs) and low slide angles (SAs) for ethylene glycol (CAs = 154 ± 0.8°; SAs = 13 ± 0.7°) and water (CAs = 158 ± 0.7°; SAs = 4 ± 0.3°). Furthermore, the composite coating was still hydrophobic after 35 cycles of wear with high roughness sandpaper (120 mesh) under three different loads, which maintained superamphiphobicity at 425 °C. This work is expected to provide a facile idea and method for the preparation of waterborne superamphiphobic coatings.

3.
ACS Omega ; 8(1): 804-818, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643432

RESUMEN

Water-based superamphiphobic coatings that are environmentally friendly have attracted tremendous attention recently, but their performances are severely limited by dispersibility and mechanical durability. Herein, a dispersion of poly(tetrafluoroethylene)/SiO2@cetyltrimethoxysilane&sodium silicate-modified aluminum tripolyphosphate (PTFE/SiO2@CTMS&Na2SiO3-ATP) superamphiphobic coatings was formed by mechanical dispersion of poly(tetrafluoroethylene) emulsion (PTFE), modified silica emulsion (SiO2@CTMS), sodium silicate (Na2SiO3), and modified aluminum tripolyphosphate (modified ATP). The four kinds of emulsions were mixed together to effectively solve the dispersity of waterborne superamphiphobic coatings. Robust waterborne superamphiphobic coatings were successfully obtained by one-step spraying and curing at 310 °C for 15 min, showing strong adhesive ability (grade 1 according to the GB/T9286), high hardness (6H), superior antifouling performance, excellent impact resistance, high-temperature resistance (<415 °C), anticorrosion (immersion of strong acid and alkali for 120 h), and heat insulation. Remarkably, the prepared coating surface showed superior wear resistance, which can undergo more than 140 abrasion cycles. Moreover, the composite coating with 35.53 wt % SiO2@CTMS possesses superamphiphobic properties, with contact angles of 160 and 156° toward water and glycerol, respectively. The preparation method of superamphiphobic coatings may be expected to present a strategy for the preparation of multifunctional waterborne superamphiphobic coatings with excellent properties and a simple method.

4.
ACS Omega ; 7(27): 23503-23510, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847285

RESUMEN

The mechanism of oxidizing reaction in the preparation of graphene oxide (GO) by a chemical oxidation method remains unclear. The main oxidant of graphite oxide has not been determined. Here, we show a new mechanism in which Mn2O7, the main oxidant, is heated to decompose oxygen atoms and react with graphite. The whole preparation process constitutes of four distinct independent steps, different from the three steps of literature registration, and each step has its own chemical oxidation reaction. In the first step, concentrated sulfuric acid and nitric acid are intercalated between graphite layers in the form of a molecular thermal motion to produce HNO3-H2SO4-GIC. In the second step, Mn2O7 is intercalated between graphite layers in the molecular convection-diffusion to Mn2O7-H2SO4-GIC. In the third step, Mn2O7 is decomposed by heat. Oxygen atoms are generated to oxidize the defects in the graphite layer to PGO. This discovery is the latest and most important. In the fourth step, PGO is purified with deionized water, hydrogen peroxide, and hydrochloric acid to GO. Optical microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectrometry, and scanning electron microscopy analytical evidence was used for confirming Mn2O7 as the main oxidant and the structure of GO. This work provides a more plausible explanation for the mechanism of oxidizing reaction in the preparation of GO by a chemical oxidation method.

5.
Sci Rep ; 12(1): 3864, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264641

RESUMEN

Decrease in light precipitation (LP) frequency has been reported in many regions. However, reason for the decrease remains poorly understood. Here, we quantify urbanization effect on LP (< 3.0 mm day-1) trend in China over the period 1960-2018. We show that urbanization has significantly affected the decreasing LP trend. The urbanization effect becomes more significant as the definition of LP becomes stricter, with the largest effect appearing in trace precipitation change (< 0.3 mm day-1) (LP0.3) during summer and autumn. We estimate that at least 25% of the decreases in LP0.3 days and amount are due to urbanization near the observational stations. Our analysis thus confirms that urbanization has largely contributed to the observed downward trend in LP, and the large-scale change in LP is less than previously believed.


Asunto(s)
Cambio Climático , Urbanización , China , Estaciones del Año
6.
Clim Change ; 168(3-4): 22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703066

RESUMEN

This is an extended editors' commentary on the topical collection "Historical and recent change in extreme climate over East Asia", which collects a total of 15 papers related to the change and variability of extreme climate events in East Asia over the last few hundreds years. The extreme climate events are broadly classified into three categories: temperature and extreme warmth/coldness, precipitation and floods/droughts and western North Pacific typhoons. This commentary briefly summarizes the main findings presented in each paper in this topical collection, and outlines the implications of these findings for monitoring, detecting and modeling of regional climate change and for studying climate change impacts and adaptability. It also assesses the uncertainties of these studies, as well as the remaining knowledge gaps that should be filled in the future. One solid conclusion we can draw from these studies is that there was a marked decadal to multi-decadal variability of extreme climate events in East Asia in recent history, and the extreme events as observed during the last decades of the instrumental era were still within the range of natural variability except for some of those related to temperature. More severe and enduring droughts occurred in the early 20 th century or the earlier periods of history, frequently leading to great famines in northern China. Uncertainties remain in reconstructing historical extreme climate events and analyzing the early instrumental records. Further research could focus on the improvement of methodology in proxy based reconstruction of multi-decadal variations of surface air temperature and precipitation/drought, the recovery, digitization, calibration and verification of the early instrumental records, and the mechanisms of the observed multi-decadal variability of extreme climate in the region.

7.
R Soc Open Sci ; 8(2): 200731, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972839

RESUMEN

Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368-1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, probably driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.

8.
Artículo en Inglés | MEDLINE | ID: mdl-32260284

RESUMEN

Climate change has a distinct impact on agriculture in China, particularly in the northeast, a key agriculture area sensitive to extreme hydroclimate events. Using monthly climate and agriculture data, the influence of drought on maize and soybean yields-two of the main crops in the region-in northeast China since 1961 to 2017 were investigated. The results showed that the temperature in the growing season increased by 1.0 °C from the period 1998-2017 to the period 1961-1980, while the annual precipitation decreased slightly. However, precipitation trends varied throughout the growing season (May-September), increasing slightly in May and June, but decreasing in July, August and September, associated with the weakening of the East Asian summer monsoon. Consequently, the annual and growing season drought frequency increased by 15%, and 25%, respectively, in the period 1998-2017 relative to the period 1961-1980. The highest drought frequency (55%) was observed in September. At the same time, the drought intensity during the growing season increased by 7.8%. The increasing frequency and intensity of drought had negative influences on the two crops. During moderate drought years in the period 1961-2017, 3.2% and 10.4% of the provincial maize and soybean yields were lost, respectively. However, during more severe drought years, losses doubled for soybean (21.8%), but increased more than four-fold for maize (14.0%). Moreover, in comparison to the period 1961-1980, a higher proportion of the yields were lost in the period 1998-2017, particularly for maize, which increased by 15% (increase for soybean was 2.4%). This change largely depends on increasing droughts in August and September, when both crops are in their filling stages. The impact of drought on maize and soybean production was different during different growth stages, where a strong relationship was noted between drought and yield loss of soybean in its filling stage. Given the sensitivity of maize and soybean yields in northeast China to drought, and the observed production trends, climate change will likely have significant negative impacts on productivity in the future.


Asunto(s)
Agricultura , Sequías , Glycine max , Zea mays , China , Cambio Climático
9.
PLoS One ; 13(7): e0199735, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30044787

RESUMEN

Human-induced environmental and climate change are widely blamed for causing rapid global biodiversity loss, but direct estimation of the proportion of biodiversity lost at local or regional scales are still infrequent. This prevents us from quantifying the main and interactive effects of anthropogenic environmental and climate change on species loss. Here, we demonstrate that the estimated proportion of species loss of 252 key protected vertebrate species at a county level of China during the past half century was 27.2% for all taxa, 47.7% for mammals, 28.8% for amphibians and reptiles and 19.8% for birds. Both human population increase and species richness showed significant positive correlations with species loss of all taxa combined, mammals, birds, and amphibians and reptiles. Temperature increase was positively correlated with all-taxa and bird species loss. Precipitation increase was negatively correlated with species loss of birds. Human population change and species richness showed more significant interactions with the other correlates of species loss. High species richness regions had higher species loss under the drivers of human environmental and climate change than low-richness regions. Consequently, ongoing human environmental and climate changes are expected to perpetuate more negative effects on the survival of key vertebrate species, particularly in high-biodiversity regions.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción/estadística & datos numéricos , Animales , Biomasa , Biota , China , Humanos
11.
Acta Crystallogr C Struct Chem ; 72(Pt 6): 485-90, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27256696

RESUMEN

Azole compounds have attracted commercial interest due to their high bactericidal and plant-growth-regulating activities. Uniconazole [or 1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol] is a highly active 1,2,4-triazole fungicide and plant-growth regulator with low toxicity. The pharmacological and toxicological properties of many drugs are modified by the formation of their metal complexes. Therefore, there is much interest in exploiting the coordination chemistry of triazole pesticides and their potential application in agriculture. However, reports of complexes of uniconazole are rare. A new cobalt(II) complex of uniconazole, namely dichloridotetrakis[1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl-κN(4))pent-1-en-3-ol]cobalt(II), [CoCl2(C15H18ClN3O)4], was synthesized and structurally characterized by element analysis, IR spectrometry and X-ray single-crystal diffraction. The crystal structural analysis shows that the Co(II) atom is located on the inversion centre and is coordinated by four uniconazole and two chloride ligands, forming a distorted octahedral geometry. The hydroxy groups of an uniconazole ligands of adjacent molecules form hydrogen bonds with the axial chloride ligands, resulting in one-dimensional chains parallel to the a axis. The complex was analysed for its antifungal activity by the mycelial growth rate method. It was revealed that the antifungal effect of the title complex is more pronounced than the effect of fungicide uniconazole for Botryosphaeria ribis, Wheat gibberellic and Grape anthracnose.


Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Fungicidas Industriales/química , Triazoles/química , Cobalto/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Hongos/efectos de los fármacos , Fungicidas Industriales/síntesis química , Fungicidas Industriales/farmacología , Enlace de Hidrógeno , Triazoles/síntesis química , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA