Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Genomics ; 12: 1-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24184205

RESUMEN

Exon Primed Intron Crossing (EPIC) markers provide molecular tools that are susceptible to be variable within species while remaining amplifiable by PCR using potentially universal primers. In this study we tested the possibility of obtaining PCR products from 50 EPIC markers on 23 species belonging to seven different phyla (Porifera, Cnidaria, Arthropoda, Nematoda, Mollusca, Annelida, Echinodermata) using 70 new primer pairs. A previous study had identified and tested those loci in a dozen species, including another phylum, Urochordata (Chenuil et al., 2010). Results were contrasted among species. The best results were achieved with the oyster (Mollusca) where 28 loci provided amplicons susceptible to contain an intron according to their size. This was however not the case with the other mollusk Crepidula fornicata, which seems to have undergone a reduction in intron number or intron size. In the Porifera, 13 loci appeared susceptible to contain an intron, a surprisingly high number for this phylum considering its phylogenetic distance with genomic data used to design the primers. For two cnidarian species, numerous loci (24) were obtained. Ecdysozoan phyla (arthropods and nematodes) proved less successful than others as expected considering reports of their rapid rate of genome evolution and the worst results were obtained for several arthropods. Some general patterns among phyla arose, and we discuss how the results of this EPIC survey may give new insights into genome evolution of the study species. This work confirms that this set of EPIC loci provides an easy-to-use toolbox to identify genetic markers potentially useful for population genetics, phylogeography or phylogenetic studies for a large panel of metazoan species. We then argue that obtaining diploid sequence genotypes for these loci became simple and affordable owing to Next-Generation Sequencing development. Species surveyed in this study belong to several genera (Acanthaster, Alvinocaris, Aplysina, Aurelia, Crepidula, Eunicella, Hediste, Hemimysis, Litoditis, Lophelia, Mesopodopsis, Mya, Ophiocten, Ophioderma, Ostrea, Pelagia, Platynereis, Rhizostoma, Rimicaris), two of them, belonging to the family Vesicomydae and Eunicidae, could not be determined at the genus level.


Asunto(s)
Intrones/genética , Invertebrados/genética , Filogenia , Animales , Cartilla de ADN , Marcadores Genéticos , Invertebrados/clasificación , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
2.
Mol Ecol ; 17(14): 3306-22, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18573165

RESUMEN

Pinpointing processes that structure the geographical distribution of genetic diversity of marine species and lead to speciation is challenging because of the lack of obvious dispersal barriers and the likelihood of substantial (passive) dispersal in oceans. In addition, cryptic radiations with sympatric distributions abound in marine species, challenging the allopatric speciation mechanism. Here, we present a phylogeographical study of the marine nematode species complex Rhabditis (Pellioditis) marina to investigate processes shaping genetic structure and speciation. Rhabditis (P.) marina lives on decaying macroalgae in the intertidal, and may therefore disperse over considerable distances. Rhabditis (P.) marina consists of several cryptic species sympatrically distributed at a local scale. Genetic variation in the COI gene was screened in 1362 specimens from 45 locations around the world. Two nuclear DNA genes (ITS and D2D3) were sequenced to infer phylogenetic species. We found evidence for ten sympatrically distributed cryptic species, seven of which show a strong genetic structuring. A historical signature showed evidence for restricted gene flow with occasional long-distance dispersal and range expansions pre-dating the last glacial maximum. Our data also point to a genetic break around the British Isles and a contact zone in the Southern Bight of the North Sea. We provide evidence for the transoceanic distribution of at least one cryptic species (PmIII) and discuss the dispersal capacity of marine nematodes. The allopatric distribution of some intraspecific phylogroups and of closely related cryptic species points to the potential for allopatric speciation in R. (P.) marina.


Asunto(s)
Flujo Génico/genética , Rhabditoidea/genética , Animales , Océano Atlántico , Variación Genética , Genética de Población , Geografía , Filogenia , Rhabditoidea/clasificación , Especificidad de la Especie
3.
Mol Phylogenet Evol ; 32(3): 770-7, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15288054

RESUMEN

Species of the order Mysida (Crustacea, Peracarida) are shrimp-like animals that occur in vast numbers in coastal regions of the world. The order Mysida comprises 1,053 species and 165 genera. The present study covers 25 species of the well-defined Mysidae, the most speciose family within the order Mysida. 18S rRNA sequence analysis confirms that the subfamily Siriellinae is monophyletic. On the other hand the subfamily Gastrosaccinae is paraphyletic and the subfamily Mysinae, represented in this study by the tribes Mysini and Leptomysini, consistently resolves into three independent clades, and hence is clearly not monophyletic. The tribe Mysini is not monophyletic either, and forms two clades of which one appears to be closely related to the Leptomysini. Our results are concordant with a number of morphological differences urging a taxonomic revision of the Mysidae.


Asunto(s)
Crustáceos/genética , Filogenia , ARN Ribosómico 18S/genética , Animales , Secuencia de Bases , Cartilla de ADN , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Océanos y Mares , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA