RESUMEN
The effect of solutions containing a statherin-derived peptide (Stn15pSpS) on the protection against enamel erosion in vitro was evaluated. Bovine enamel specimens were divided into 4 groups (n = 15/group): (1) deionized water (negative control), (2) Elmex Erosion Protection™ (positive control), (3) 1.88 × 10-5 M Stn15pSpS, and (4) 3.76 × 10-5 M Stn15pSpS. The solutions were applied on the specimens for 1 min. Stimulated saliva was collected from 3 donors and used to form a 2-h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH-cycling protocol 4 times/day, for 7 days (0.01 M HCl pH 2.0/45 s, artificial saliva/2 h, and artificial saliva overnight). The solutions were applied again during pH-cycling, 2 times/day for 1 min after the first and last erosive challenges. Enamel loss (µm) was assessed by contact profilometry. Data were analyzed by Kruskal-Wallis and Dunn's test (p < 0.05). The best protection against erosion was conferred by Elmex Erosion Protection that significantly differed from all the other treatments, followed by the solutions containing Stn15pSpS, regardless of the concentration. However, 3.76 × 10-5 M Stn15pSpS did not differ from the negative control. The solution containing the lower concentration of Stn15pSpS protected against erosion in vitro, which should be confirmed using protocols that more closely resemble the clinical condition.
Asunto(s)
Erosión de los Dientes , Animales , Bovinos , Humanos , Esmalte Dental , Fluoruros/farmacología , Saliva Artificial/farmacología , Erosión de los Dientes/prevención & control , Proteínas y Péptidos Salivales/farmacologíaRESUMEN
The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into 2 groups (n = 135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/mL CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2-h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90 s, artificial saliva/2 h, and artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey's test (p < 0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/mL gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.
Asunto(s)
Cistatinas , Saccharum , Erosión de los Dientes , Animales , Bovinos , Esmalte Dental , Dentina , Geles , Humanos , Fluoruro de Sodio , Erosión de los Dientes/prevención & controlRESUMEN
To analyze the effect of a sugarcane cystatin (CaneCPI-5) on the microbial profile and viability, as well as on the prevention of dentin demineralization using a microcosm biofilm model. Ninety bovine dentine specimens were divided into five experimental groups according with the solution they were treated for 60 s: (1) PBS (negative control), (2) 0.12% chlorhexidine (positive control), (3) Fluoride (500 ppm F, as NaF), (4) 0.025 mg/ml CaneCPI-5, and (5) 0.05 mg/ml CaneCPI-5. Specimens were incubated with inoculum (McBain's saliva plus human saliva) in the first 8 h, and from then on, they were exposed to McBain saliva containing sucrose and daily treated (60 s) with the solutions for 5 days. Resazurin and colony-forming unit counting assays were performed. Dentin demineralization was measured by transverse micro-radiography (TMR). 0.12% chlorhexidine significantly reduced the metabolic activity of the microcosm biofilm in relation to the negative control and treated groups (p < 0.01). CHX and F significantly reduced the counts of total microorganisms, mutans group streptococci, and lactobacilli when compared with the negative control. None of the treatments was able to significantly reduce dentin demineralization in comparison with the negative control. In the model evaluated, CaneCPI-5 neither altered the microcosm biofilm profile and viability nor protected dentin against demineralization.