Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 38(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796050

RESUMEN

Telomeres, the protective ends of eukaryotic chromosomes, are replicated through concerted actions of conventional DNA polymerases and elongated by telomerase, but the regulation of this process is not fully understood. Telomere replication requires (Ctc1/Cdc13)-Stn1-Ten1, a telomeric ssDNA-binding complex homologous to RPA Here, we show that the evolutionarily conserved phosphatase Ssu72 is responsible for terminating the cycle of telomere replication in fission yeast. Ssu72 controls the recruitment of Stn1 to telomeres by regulating Stn1 phosphorylation at Ser74, a residue located within its conserved OB-fold domain. Consequently, ssu72∆ mutants are defective in telomere replication and exhibit long 3'-ssDNA overhangs, indicative of defective lagging-strand DNA synthesis. We also show that hSSU72 regulates telomerase activation in human cells by controlling recruitment of hSTN1 to telomeres. These results reveal a previously unknown yet conserved role for the phosphatase SSU72, whereby this enzyme controls telomere homeostasis by activating lagging-strand DNA synthesis, thus terminating the cycle of telomere replication.


Asunto(s)
Replicación del ADN , Evolución Molecular , Fosfoproteínas Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Homeostasis del Telómero , Telómero/genética , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Secuencia Conservada , Humanos , Fosforilación , Schizosaccharomyces/enzimología , Homología de Secuencia
2.
Cell Rep ; 9(6): 2011-7, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533340

RESUMEN

Eukaryotic cells use two principal mechanisms for repairing DNA double-strand breaks (DSBs): homologous recombination (HR) and nonhomologous end-joining (NHEJ). DSB repair pathway choice is strongly regulated during the cell cycle. Cyclin-dependent kinase 1 (Cdk1) activates HR by phosphorylation of key recombination factors. However, a mechanism for regulating the NHEJ pathway has not been established. Here, we report that Xlf1, a fission yeast XLF ortholog, is a key regulator of NHEJ activity in the cell cycle. We show that Cdk1 phosphorylates residues in the C terminus of Xlf1 over the course of the cell cycle. Mutation of these residues leads to the loss of Cdk1 phosphorylation, resulting in elevated levels of NHEJ repair in vivo. Together, these data establish that Xlf1 phosphorylation by Cdc2(Cdk1) provides a molecular mechanism for downregulation of NHEJ in fission yeast and indicates that XLF is a key regulator of end-joining processes in eukaryotic organisms.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína Quinasa CDC2/genética , Regulación hacia Abajo , Recombinación Homóloga , Fosforilación , Estructura Terciaria de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
3.
Nature ; 467(7312): 228-32, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20829797

RESUMEN

Telomeres protect the normal ends of chromosomes from being recognized as deleterious DNA double-strand breaks. Recent studies have uncovered an apparent paradox: although DNA repair is prevented, several proteins involved in DNA damage processing and checkpoint responses are recruited to telomeres in every cell cycle and are required for end protection. It is currently not understood how telomeres prevent DNA damage responses from causing permanent cell cycle arrest. Here we show that fission yeast (Schizosaccharomyces pombe) cells lacking Taz1, an orthologue of human TRF1 and TRF2 (ref. 2), recruit DNA repair proteins (Rad22(RAD52) and Rhp51(RAD51), where the superscript indicates the human orthologue) and checkpoint sensors (RPA, Rad9, Rad26(ATRIP) and Cut5/Rad4(TOPBP1)) to telomeres. Despite this, telomeres fail to accumulate the checkpoint mediator Crb2(53BP1) and, consequently, do not activate Chk1-dependent cell cycle arrest. Artificially recruiting Crb2(53BP1) to taz1Δ telomeres results in a full checkpoint response and cell cycle arrest. Stable association of Crb2(53BP1) to DNA double-strand breaks requires two independent histone modifications: H4 dimethylation at lysine 20 (H4K20me2) and H2A carboxy-terminal phosphorylation (γH2A). Whereas γH2A can be readily detected, telomeres lack H4K20me2, in contrast to internal chromosome locations. Blocking checkpoint signal transduction at telomeres requires Pot1 and Ccq1, and loss of either Pot1 or Ccq1 from telomeres leads to Crb2(53BP1) foci formation, Chk1 activation and cell cycle arrest. Thus, telomeres constitute a chromatin-privileged region of the chromosomes that lack essential epigenetic markers for DNA damage response amplification and cell cycle arrest. Because the protein kinases ATM and ATR must associate with telomeres in each S phase to recruit telomerase, exclusion of Crb2(53BP1) has a critical role in preventing telomeres from triggering cell cycle arrest.


Asunto(s)
Reparación del ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transducción de Señal , Telómero/metabolismo , Ciclo Celular , Daño del ADN , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión a Telómeros/metabolismo
4.
Mol Cell ; 32(1): 106-17, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18851837

RESUMEN

Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa II/química , ADN Polimerasa II/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Modelos Moleculares , Complejos Multiproteicos , Mutación , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
5.
Genetics ; 175(3): 993-1010, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17179095

RESUMEN

Balanced levels of histones are crucial for chromosome stability, and one major component of this control regulates histone mRNA amounts. The Saccharomyces cerevisiae poly(A) polymerases Trf4 and Trf5 are involved in a quality control mechanism that mediates polyadenylation and consequent degradation of various RNA species by the nuclear exosome. None of the known RNA targets, however, explains the fact that trf mutants have specific cell cycle defects consistent with a role in maintaining genome stability. Here, we investigate the role of Trf4/5 in regulation of histone mRNA levels. We show that loss of Trf4 and Trf5, or of Rrp6, a component of the nuclear exosome, results in elevated levels of transcripts encoding DNA replication-dependent histones. Suggesting that increased histone levels account for the phenotypes of trf mutants, we find that TRF4 shows synthetic genetic interactions with genes that negatively regulate histone levels, including RAD53. Moreover, synthetic lethality of trf4Delta rad53Delta is rescued by reducing histone levels whereas overproduction of histones is deleterious to trf's and rrp6Delta mutants. These results identify TRF4, TRF5, and RRP6 as new players in the regulation of histone mRNA levels in yeast. To our knowledge, the histone transcripts are the first mRNAs that are upregulated in Trf mutants.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Exorribonucleasas/genética , Regulación Fúngica de la Expresión Génica/genética , Inestabilidad Genómica/genética , Histonas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Northern Blotting , Complejo Multienzimático de Ribonucleasas del Exosoma , Citometría de Flujo , Histonas/genética , Oligonucleótidos/genética
6.
Mol Cell Biol ; 26(7): 2490-500, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537895

RESUMEN

The precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus. Specifically, we show that deletion of PIF1 suppresses the lethality of a DNA2-null mutant. The pif1delta dna2delta strain remains methylmethane sulfonate sensitive and temperature sensitive; however, these phenotypes can be suppressed by further deletion of a subunit of pol delta, POL32. Deletion of PIF1 also suppresses the cold-sensitive lethality and hydroxyurea sensitivity of the pol32delta strain. Dna2 is thought to function by cleaving long flaps that arise during OFP due to excessive strand displacement by pol delta and/or by an as yet unidentified helicase. Thus, suppression of dna2delta can be rationalized if deletion of POL32 and/or PIF1 results in a reduction in long flaps that require Dna2 for processing. We further show that deletion of DNA2 suppresses the long-telomere phenotype and the high rate of formation of gross chromosomal rearrangements in pif1Delta mutants, suggesting a role for Dna2 in telomere elongation in the absence of Pif1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN , Eliminación de Gen , Genes Fúngicos/genética , Metilmetanosulfonato/farmacología , Mitocondrias/metabolismo , Modelos Biológicos , Mutación/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Supresión Genética/genética , Telomerasa/antagonistas & inhibidores , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA