Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091875

RESUMEN

Individual-based simulation has become an increasingly crucial tool for many fields of population biology. However, implementing realistic and stable simulations in continuous space presents a variety of difficulties, from modeling choices to computational efficiency. This paper aims to be a practical guide to spatial simulation, helping researchers to implement realistic and efficient spatial, individual-based simulations and avoid common pitfalls. To do this, we delve into mechanisms of mating, reproduction, density-dependent feedback, and dispersal, all of which may vary across the landscape, discuss how these affect population dynamics, and describe how to parameterize simulations in convenient ways (for instance, to achieve a desired population density). We also demonstrate how to implement these models using the current version of the individual-based simulator, SLiM. Since SLiM has the capacity to simulate genomes, we also discuss natural selection - in particular, how genetic variation can affect demographic processes. Finally, we provide four short vignettes: simulations of pikas that shift their range up a mountain as temperatures rise; mosquitoes that live in rivers as juveniles and experience seasonally changing habitat; cane toads that expand across Australia, reaching 120 million individuals; and monarch butterflies whose populations are regulated by an explicitly modeled resource (milkweed).

2.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230808

RESUMEN

The often tight association between parasites and their hosts means that under certain scenarios, the evolutionary histories of the two species can become closely coupled both through time and across space. Using spatial genetic inference, we identify a potential signal of common dispersal patterns in the Anopheles gambiae and Plasmodium falciparum host-parasite system as seen through a between-species correlation of the differences between geographic sampling location and geographic location predicted from the genome. This correlation may be due to coupled dispersal dynamics between host and parasite but may also reflect statistical artifacts due to uneven spatial distribution of sampling locations. Using continuous-space population genetics simulations, we investigate the degree to which uneven distribution of sampling locations leads to bias in prediction of spatial location from genetic data and implement methods to counter this effect. We demonstrate that while algorithmic bias presents a problem in inference from spatio-genetic data, the correlation structure between A. gambiae and P. falciparum predictions cannot be attributed to spatial bias alone and is thus likely a genetic signal of co-dispersal in a host-parasite system.


Asunto(s)
Anopheles , Malaria Falciparum , Parásitos , Plasmodium , Animales , Parásitos/genética , Anopheles/genética , Anopheles/parasitología , Interacciones Huésped-Parásitos/genética , Plasmodium/genética , Plasmodium falciparum/genética , Geografía
3.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37503196

RESUMEN

The often tight association between parasites and their hosts means that under certain scenarios, the evolutionary histories of the two species can become closely coupled both through time and across space. Using spatial genetic inference, we identify a potential signal of common dispersal patterns in the Anopheles gambiae and Plasmodium falciparum host-parasite system as seen through a between-species correlation of the differences between geographic sampling location and geographic location predicted from the genome. This correlation may be due to coupled dispersal dynamics between host and parasite, but may also reflect statistical artifacts due to uneven spatial distribution of sampling locations. Using continuous-space population genetics simulations, we investigate the degree to which uneven distribution of sampling locations leads to bias in prediction of spatial location from genetic data and implement methods to counter this effect. We demonstrate that while algorithmic bias presents a problem in inference from spatio-genetic data, the correlation structure between A. gambiae and P. falciparum predictions cannot be attributed to spatial bias alone, and is thus likely a genetic signal of co-dispersal in a host-parasite system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA