Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 1): 126697, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673138

RESUMEN

Wound healing is a multifaceted and complex process that includes inflammation, hemostasis, remodeling, and granulation. Failures in any link may cause the healing process to be delayed. As a result, wound healing has always been a main research focus across the entire medical field, posing significant challenges and financial burdens. Hence, the current investigation focused on the design and development of arginine-modified chitosan/PVA hydrogel-based microneedles (MNs) as a curcumin (CUR) delivery system for improved wound healing and antibacterial activity. The substrate possesses exceptional swelling capabilities that allow tissue fluid from the wound to be absorbed, speeding up wound closure. The antibacterial activity of MNs was investigated against S. aureus and E. coli. The results revealed that the developed CUR-loaded MNs had increased antioxidant activity and sustained drug release behavior. Furthermore, after being loaded in the developed MNs, it revealed improved antibacterial activity of CUR. Wound healing potential was assessed by histopathological analysis and wound closure%. The observed results suggest that the CUR-loaded MNs greatly improved wound healing potential via tissue regeneration and collagen deposition, demonstrating the potential of developed MNs patches to be used as an effective carrier for wound healing in healthcare settings.


Asunto(s)
Quitosano , Curcumina , Hidrogeles/farmacología , Quitosano/farmacología , Curcumina/farmacología , Escherichia coli , Staphylococcus aureus , Cicatrización de Heridas , Antibacterianos/farmacología
2.
Mater Sci Eng C Mater Biol Appl ; 118: 111519, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255074

RESUMEN

Management of chronic diabetic ulcers remains as a major challenge in healthcare which requires extensive multidisciplinary approaches to ensure wound protection, management of excess wound exudates and promoting healing. Developing wound healing patches that can act as a protective barrier and support healing is highly needed to manage chronic diabetic ulcers. In order to boost the wound healing potential of patch material, bioactive agents such as growth factors can be used. Porous membranes made of nanofibers generated using electrospinning have potential for application as wound coverage matrices. However, electrospun membranes produced from several biodegradable polymers are hydrophobic and cannot manage the excess exudates produced by chronic wounds. Gelatin-methacryloyl (GelMA) hydrogels absorb excess exudates and provide an optimal biological environment for the healing wound. Epidermal growth factor (EGF) promotes cell migration, angiogenesis and overall wound healing. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membranes provide microbial, thermal and mechanical barrier properties to the wound healing patch. Herein, we developed a biodegradable polymeric patch based on the combination of mechanically stable electrospun PHBV, GelMA hydrogel and EGF for promoting diabetic wound healing. In vitro and in vivo studies were carried out to evaluate the effect of developed patches on cell proliferation, cell migration, angiogenesis and wound healing. Our results showed that EGF loaded patches can promote the migration and proliferation of multiple types of cells (keratinocytes, fibroblasts and endothelial cells) and enhance angiogenesis. In situ development of the patch and subsequent in vivo wound healing study in diabetic rats showed that EGF loaded patches provide rapid healing compared to control wounds. Interestingly, 100 ng EGF per cm2 of the patches was enough to provide favourable cellular response, angiogenesis and rapid diabetic wound healing. Overall results indicate that EGF loaded PHBV-GelMA hybrid patch could be a promising approach to promote diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Gelatina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Endoteliales , Poliésteres , Ratas , Cicatrización de Heridas
3.
Int J Biol Macromol ; 156: 153-170, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32229203

RESUMEN

Electrospinning is one of the most promising techniques for generating porous, nonwoven, and submicron fiber-based membranes for various applications such as catalysis, sensing, tissue engineering and wound healing. Wide range of biopolymers including chitosan can be used to generate submicron fibrous membranes. Owing to the extra cellular matrix (ECM) mimicking property, exudate uptake capacity, biocompatibility, antibacterial activity and biodegradability, electrospun membranes based on chitosan loaded with biologically active agents can play important role in wound healing applications. In order to improve the mechanical stability, degradation, antimicrobial property, vascularization potential and wound healing capacity, various active components such as other polymers, therapeutic agents, nanoparticles and biomolecules were introduced. Approaches such as coaxial electrospinning with other polymers have also been tried to improve the properties of chitosan membranes. To improve the mechanical stability under in vivo conditions, various crosslinking strategies ranging from physical, chemical and biological approaches were also tried by researchers. Electrospun chitosan meshes have also been designed in a highly specialized manner with specific functionalities to deal with the challenging wound environment of diabetic and burn wounds. This review provides a detailed overview of electrospun chitosan-based membranes containing various bioactive and therapeutic agents in the perspective of wound healing and skin regeneration.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Quitosano/uso terapéutico , Membranas Artificiales , Nanofibras/envenenamiento , Nanofibras/uso terapéutico , Heridas y Lesiones/tratamiento farmacológico , Materiales Biocompatibles/síntesis química , Quitosano/aislamiento & purificación , Técnicas Electroquímicas , Humanos , Nanofibras/química , Cicatrización de Heridas
4.
Int J Nanomedicine ; 14: 9603-9617, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824154

RESUMEN

PURPOSE: Non-healing or slow healing chronic wounds are among serious complications of diabetes that eventually result in amputation of limbs and increased morbidities and mortalities. Chronic diabetic wounds show reduced blood vessel formation (lack of angiogenesis), inadequate cell proliferation and poor cell migration near wounds. In this paper, we report the development of a hydrogel-based novel wound dressing material loaded with reduced graphene oxide (rGO) to promote cell proliferation, cell migration and angiogenesis for wound healing applications. METHODS: Gelatin-methacryloyl (GelMA) based hydrogels loaded with different concentrations of rGO were fabricated by UV crosslinking. Morphological and physical characterizations (porosity, degradation, and swelling) of rGO incorporated GelMA hydrogel was performed. In vitro cell proliferation, cell viability and cell migration potential of the hydrogels were analyzed by MTT assay, live/dead staining, and wound healing scratch assay respectively. Finally, in vivo chicken embryo angiogenesis (CEO) testing was performed to evaluate the angiogenic potential of the prepared hydrogel. RESULTS: The experimental results showed that the developed hydrogel possessed enough porosity and exudate-absorbing capacity. The biocompatibility of prepared hydrogel on three different cell lines (3T3 fibroblasts, EA.hy926 endothelial cells, and HaCaT keratinocytes) was confirmed by in vitro cell culture studies (live/dead assay). The GelMA hydrogel containing 0.002% w/w rGO considerably increased the proliferation and migration of cells as evident from MTT assay and wound healing scratch assay. Furthermore, rGO impregnated GelMA hydrogel significantly enhanced the angiogenesis in the chick embryo model. CONCLUSION: The positive effect of 0.002% w/w rGO impregnated GelMA hydrogels on angiogenesis, cell migration and cell proliferation suggests that these formulations could be used as a functional wound healing material for the healing of chronic wounds.


Asunto(s)
Gelatina/farmacología , Grafito/farmacología , Hidrogeles/farmacología , Metacrilatos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Oxidación-Reducción , Porcinos , Cicatrización de Heridas/efectos de los fármacos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA