RESUMEN
Chickens are considered to be potential reservoirs of Newcastle disease virus (NDV). In this study, six Newcastle disease virus strains were isolated and characterized in Tibetan chickens. The HN gene was sequenced, and phylogenetic relationship to reference strains was studied. The phylogenetic analysis demonstrated that these six isolated strains were closely related to NDV isolates of the reference strains GQ245823, KT002186, KU527561, KJ563939, AY225110, EU305607, KM056357, Y18898, GQ245832, AF077761 and lasota strain. Among them, EU305607, KJ563939 and KM056357 were isolated from India, while lasota strain came from attenuated vaccine widely used in China. Then, mean death time (MDT) and intracerebral pathogenicity index (ICPI) were used to estimate the pathogenicity of the isolates. Pathogenicity experiment showed HNH1 and HN17 to be virulent. Our results indicated that genetically diverse viruses circulate in Tibetan chickens, and based upon the phlogeographic analysis, we estimated the origin of ancestral viruses of the isolates and its sister strains located in India and China (lasota strain). It indicates the importance of continuous surveillance to enhance current understanding of the genetic evolution of the NDV strains.(AU)
Asunto(s)
Animales , Femenino , Pollos/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Filogenia , TibetRESUMEN
Chickens are considered to be potential reservoirs of Newcastle disease virus (NDV). In this study, six Newcastle disease virus strains were isolated and characterized in Tibetan chickens. The HN gene was sequenced, and phylogenetic relationship to reference strains was studied. The phylogenetic analysis demonstrated that these six isolated strains were closely related to NDV isolates of the reference strains GQ245823, KT002186, KU527561, KJ563939, AY225110, EU305607, KM056357, Y18898, GQ245832, AF077761 and lasota strain. Among them, EU305607, KJ563939 and KM056357 were isolated from India, while lasota strain came from attenuated vaccine widely used in China. Then, mean death time (MDT) and intracerebral pathogenicity index (ICPI) were used to estimate the pathogenicity of the isolates. Pathogenicity experiment showed HNH1 and HN17 to be virulent. Our results indicated that genetically diverse viruses circulate in Tibetan chickens, and based upon the phlogeographic analysis, we estimated the origin of ancestral viruses of the isolates and its sister strains located in India and China (lasota strain). It indicates the importance of continuous surveillance to enhance current understanding of the genetic evolution of the NDV strains.(AU)
Asunto(s)
Animales , Femenino , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Pollos/virología , Filogenia , TibetRESUMEN
ABSTRACT: Chickens are considered to be potential reservoirs of Newcastle disease virus (NDV). In this study, six Newcastle disease virus strains were isolated and characterized in Tibetan chickens. The HN gene was sequenced, and phylogenetic relationship to reference strains was studied. The phylogenetic analysis demonstrated that these six isolated strains were closely related to NDV isolates of the reference strains GQ245823, KT002186, KU527561, KJ563939, AY225110, EU305607, KM056357, Y18898, GQ245832, AF077761 and lasota strain. Among them, EU305607, KJ563939 and KM056357 were isolated from India, while lasota strain came from attenuated vaccine widely used in China. Then, mean death time (MDT) and intracerebral pathogenicity index (ICPI) were used to estimate the pathogenicity of the isolates. Pathogenicity experiment showed HNH1 and HN17 to be virulent. Our results indicated that genetically diverse viruses circulate in Tibetan chickens, and based upon the phlogeographic analysis, we estimated the origin of ancestral viruses of the isolates and its sister strains located in India and China (lasota strain). It indicates the importance of continuous surveillance to enhance current understanding of the genetic evolution of the NDV strains.