Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(23): 16686-16694, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36375177

RESUMEN

Rapidly reducing urban methane (CH4) emissions is a critical component of strategies aimed at limiting climate change. Individual source measurements provide the details necessary to develop actionable mitigation strategies and are highly complementary to mobile surveys and other top-down methods. Here, we perform 615 individual source measurements in Montréal, Canada, to quantify CH4 emissions from historic landfills, manholes, and fugitive emissions from natural gas (NG) distribution systems. We find that in 2020, historic landfills produced 901 (452 to 1541, 95% c.i.) tons of CH4, manholes emitted 786 (32 to 2602, 95% c.i.) tons of CH4, and NG distribution systems emitted 451 (176-843, 95% c.i.) tons of CH4, placing them all within the top four CH4 sources in Montréal. Methane emissions from both historic landfills and manholes are not accounted for in any greenhouse gas inventory. We find that geochemistry alone cannot positively identify source subcategories (e.g., type of manhole or NG infrastructure) in almost all cases, although C2/C1 ratios can distinguish NG distribution sources from biogenic sources (historic landfills and manholes). Using our individual source measurement data, we show that historic landfills have the greatest potential for CH4 reductions but the highest mitigation costs, unless we target the highest emitting landfills. In contrast, CH4 emissions from manholes can be reduced at low costs, but reduction methods are commercially unavailable. For NG distribution, methods such as increasing repair rates for high-emitting industrial meters can greatly reduce mitigation costs and emissions. Overall, our results highlight the role of individual source measurements in developing actionable CH4 mitigation strategies to meet municipal, regional, and national climate action plans.


Asunto(s)
Contaminantes Atmosféricos , Gas Natural , Gas Natural/análisis , Metano/análisis , Contaminantes Atmosféricos/análisis , Instalaciones de Eliminación de Residuos , Cambio Climático
3.
Environ Sci Technol ; 55(1): 563-570, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33322902

RESUMEN

Abandoned oil and gas wells are one of the most uncertain sources of methane emissions into the atmosphere. To reduce these uncertainties and improve emission estimates, we geospatially and statistically analyze 598 direct methane emission measurements from abandoned oil and gas wells and aggregate well counts from regional databases for the United States (U.S.) and Canada. We estimate the number of abandoned wells to be at least 4,000,000 wells for the U.S. and at least 370,000 for Canada. Methane emission factors range from 1.8 × 10-3 g/h to 48 g/h per well depending on the plugging status, well type, and region, with the overall average at 6.0 g/h. We find that annual methane emissions from abandoned wells are underestimated by 150% in Canada and by 20% in the U.S. Even with the inclusion of two to three times more measurement data than used in current inventory estimates, we find that abandoned wells remain the most uncertain methane source in the U.S. and become the most uncertain source in Canada. Understanding methane emissions from abandoned oil and gas wells can provide critical insights into broader environmental impacts of abandoned wells, which are rapidly growing in number around the world.


Asunto(s)
Contaminantes Atmosféricos , Yacimiento de Petróleo y Gas , Contaminantes Atmosféricos/análisis , Atmósfera , Canadá , Metano/análisis , Gas Natural/análisis , Estados Unidos , Pozos de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA