Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(47): 29618-29628, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33154160

RESUMEN

Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and ß-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to ß-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.


Asunto(s)
Insulina/metabolismo , Sustitución de Aminoácidos/fisiología , Animales , Línea Celular , Línea Celular Tumoral , Diabetes Mellitus/metabolismo , Disulfuros/metabolismo , Redes Reguladoras de Genes/fisiología , Células HEK293 , Humanos , Células Secretoras de Insulina/metabolismo , Células MCF-7 , Proinsulina/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína , Ratas , Receptor de Insulina/metabolismo , Relación Estructura-Actividad
2.
J Biol Chem ; 295(10): 3080-3098, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32005662

RESUMEN

Globular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.


Asunto(s)
Evolución Molecular , Insulina/análogos & derivados , Secuencias de Aminoácidos , Animales , Sitios de Unión , Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Células HEK293 , Humanos , Insulina/metabolismo , Insulina/uso terapéutico , Simulación de Dinámica Molecular , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Ratas , Receptor de Insulina/metabolismo , Relación Estructura-Actividad , Termodinámica
3.
Chemistry ; 26(21): 4695-4700, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-31958351

RESUMEN

Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight.

4.
J Biol Chem ; 293(28): 10895-10910, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29880646

RESUMEN

Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.


Asunto(s)
Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Diabetes Mellitus Experimental/prevención & control , Insulina/química , Insulina/metabolismo , Receptor de Insulina/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Masculino , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ratas , Ratas Endogámicas Lew
5.
Curr Opin Endocrinol Diabetes Obes ; 24(4): 267-278, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28509691

RESUMEN

PURPOSE OF REVIEW: The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. RECENT FINDINGS: Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic ß cells. SUMMARY: Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.


Asunto(s)
Glucemia/análisis , Glucemia/fisiología , Hipoglucemiantes/administración & dosificación , Bombas de Infusión Implantables , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Algoritmos , Automonitorización de la Glucosa Sanguínea/instrumentación , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diseño de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA