Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(19): 193602, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799233

RESUMEN

We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

2.
Phys Rev Lett ; 115(7): 073003, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26317718

RESUMEN

We demonstrate rapid loading of a small array of optical tweezers with a single ^{87}Rb atom per site. We find that loading efficiencies of up to 90% per tweezer are achievable in less than 170 ms for traps separated by more than 1.7 µm. Interestingly, we find the load efficiency is affected by nearby traps and present the efficiency as a function of the spacing between two optical tweezers. This enhanced loading, combined with subsequent rearranging of filled sites, will enable the study of quantum many-body systems via quantum gas assembly.

3.
Nature ; 426(6966): 537-40, 2003 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-14647340

RESUMEN

The realization of superfluidity in a dilute gas of fermionic atoms, analogous to superconductivity in metals, represents a long-standing goal of ultracold gas research. In such a fermionic superfluid, it should be possible to adjust the interaction strength and tune the system continuously between two limits: a Bardeen-Cooper-Schrieffer (BCS)-type superfluid (involving correlated atom pairs in momentum space) and a Bose-Einstein condensate (BEC), in which spatially local pairs of atoms are bound together. This crossover between BCS-type superfluidity and the BEC limit has long been of theoretical interest, motivated in part by the discovery of high-temperature superconductors. In atomic Fermi gas experiments superfluidity has not yet been demonstrated; however, long-lived molecules consisting of locally paired fermions have been reversibly created. Here we report the direct observation of a molecular Bose-Einstein condensate created solely by adjusting the interaction strength in an ultracold Fermi gas of atoms. This state of matter represents one extreme of the predicted BCS-BEC continuum.

4.
Nature ; 424(6944): 47-50, 2003 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12840753

RESUMEN

Following the realization of Bose-Einstein condensates in atomic gases, an experimental challenge is the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, bosonic atoms in a Bose-Einstein condensate have been coupled to electronic ground-state molecules through photoassociation or a magnetic field Feshbach resonance. The availability of atomic Fermi gases offers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum statistics of the system. Such a coupling would be closely related to the pairing mechanism in a fermionic superfluid, predicted to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of ultracold 40K2 molecules. Starting with a quantum degenerate Fermi gas of atoms at a temperature of less than 150 nK, we scan the system over a Feshbach resonance to create adiabatically more than 250,000 trapped molecules; these can be converted back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning the magnetic field away from the Feshbach resonance, and can be varied over a wide range. We directly detect these weakly bound molecules through their radio-frequency photodissociation spectra; these probe the molecular wavefunction, and yield binding energies that are consistent with theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA