RESUMEN
The majority of OX40L is found on professional antigen-presenting cells (APC), the potency of OX40L to enhance the immunogenicity of potential vaccines against leishmania is not yet fully investigated. There is no report of administration of OX40L on cutaneous leishmaniasis either in therapy or prophylactic immunisation and the present study for the first time reports the effect of OX40L on L. mexicana infection. In this study, B9B8E2 cells were transfected with the murine OX40L and IgG1 plasmids, were used to produce the mOX40-mIgG1 (MM1). The therapeutic effects of MM1(mOX40L-mIgG1) was tested in a challenge experiment using L. mexicana infected BALB/c mice. Mice received two doses of MM1, on day 3 and 7 after the infection. Mice receiving MM1 generated an inflammatory reaction a few days after the injection of the OX40L, which was gradually dampened and finally disappeared 3 weeks later. There was a significant delay in the growth of developing lesions in mice receiving OX40L compared to controls injected with PBS and the size of lesions in the group receiving MM1 was significantly smaller than that of injected with either PBS. 40% of mice given MM1 remained lesion free for two months, when experiments were terminated. The results clearly indicate the high therapeutic effect of mOX40L-mIgG1 fusion protein in L. mexicana infection. The effect of OX40L on the enhancement of immunisation, needs to be further investigated for developing new vaccine strategies.
Asunto(s)
Leishmania , Leishmaniasis Cutánea , Animales , Ratones , Inmunoglobulina G , Ratones Endogámicos BALB C , Leishmaniasis Cutánea/prevención & control , Leishmaniasis Cutánea/veterinariaRESUMEN
Mycoparasites collected from aerial parts of the cocoa plant (Theobroma cacao) have shown great promise in the control of black pod, caused by Phytophthora palmivora, and moniliasis, caused by Moniliophthora roreri. However, the ecology of epiphytic mycoparasites is still poorly understood although it has a direct bearing on applied biocontrol practices, ranging from the identification and isolation of promising biocontrol candidates to formulation needs and required application frequency. One objective of this study was to determine the natural abundance of mycoparasites on cocoa flowers and pods in relation to crop development stage and cultivar. For this purpose, native mycoparasites were detected on cocoa flowers and pods using the precolonised plate baiting technique. Furthermore, the survival of an applied Clonostachys rosea isolate on cocoa pods on shaded and non-shaded trees was compared as well as the recolonisation patterns of surface-sterilised pods by native mycoparasites under these conditions. Clonostachys spp. were the most commonly isolated native mycoparasites, followed by Fusarium spp. No differences in the occurrence of native, epiphytic mycoparasites were observed between the three main cocoa cultivars, 'Criollo', 'Forastero' and 'Trinitario', nor between clones within these groups. Thus, a single biocontrol inoculum can be suitable for application to cultivar mixtures of cocoa commonly grown together in a field. Different susceptibility classes of segregating F1 populations of hybrids with resistance against M. roreri and P. palmivora supported similar population levels and taxonomic assemblages of mycoparasites. Therefore, we reject the hypothesis that these antagonists mediate resistance. Mycoparasite abundance and genetic disease resistance to black pod and moniliasis are independent phenomena and should lead to additive effects if employed simultaneously in an integrated disease management programme. The survival of applied C. rosea was not affected by the shading regime or any other meteorological parameter measured. On the other hand, recolonisation of surface-sterilised cocoa pods by most native mycoparasites was faster in the shade. Only Trichoderma spp. colonised pods exposed to direct sunlight faster than shaded ones. The implications for the design of biocontrol inocula and formulation technology are discussed.