RESUMEN
The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.
Asunto(s)
Factor 1 Eucariótico de Iniciación , Higromicina B , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Núcleo Celular/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Higromicina B/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismoRESUMEN
Retinoblastoma (Rb) was the first tumour suppressor factor described, and it is dysfunctional in several types of cancers. Structurally, Rb is a very large, multifunctional protein organized in different domains connected by intrinsically disordered regions. Due to the complex structure of Rb, biochemical manipulation is difficult. The Rb protein has been implicated in many different cellular processes, such as the cell cycle control, senescence and even apoptosis. The activity of Rb is regulated by phosphorylation, and many different sites of phosphorylation have been described. However, the oncoprotein HDM2, can promote Rb degradation by the proteasome. This form of Rb regulation is largely unknown. Here we report the expression and purification of the full-length Rb protein and its phosphomimetic form, Rb(S567D), in a recombinant system. We also produced and purified the HDM2 protein and its phosphomimetic mutant, HDM2(S395D). The proteins interacted strongly when we used the phosphomimetic mutants, mimicking damaged DNA conditions. The expression of the proteins in E. coli allowed us to control the phosphorylation status of the proteins.