Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612147

RESUMEN

After the Fukushima nuclear disaster, the nuclear materials community has been vastly investing in accident tolerant fuel (ATF) concepts to modify/replace Zircaloy cladding material. Iron-chromium-aluminum (FeCrAl) alloys are one of the leading contenders in this race. In this study, we investigated FA-SMT (or APMT-2), PM-C26M, and Fe17Cr5.5Al over a time period of 6 months in simulated BWR environments and compared their performance with standard Zirc-2 and SS316 materials. Our results implied that water chemistry along with alloy chemistry has a profound effect on the corrosion rate of FeCrAl alloys. Apart from SS316 and Zirc-2 tube specimens, all FeCrAl alloys showed a mass loss in hydrogen water chemistry (HWC). FA-SMT displayed minimal mass loss compared to PM-C26M and Fe17Cr5.5Al because of its higher Cr content. The mass gain of FeCrAl alloys in normal water chemistry (NWC) is significantly less when compared to Zirc-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA