Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 234: 106627, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33964669

RESUMEN

Data on the uptake of elements and radionuclides by flora from soils in arid environments are underrepresented in international databases, especially when comparing across seasons. This study improved the understanding on the uptake of natural uranium-series radionuclides, as well as more than 30 elements, in a range of Australian native flora species that are internationally representative of an arid/semi-arid zone (e.g. Acacia, Astrebla, Atriplex, and Dodonea). Results indicate that the soil-to-plant uptake ratios were generally higher when compared with international data for grasses and shrubs from more temperate environments. The majority of the elemental concentrations in grasses were higher in winter than in summer and the opposite trend was found in shrubs, which suggests that the season of collection potentially introduces variability in the reported concentration ratios. The data also suggest that grasses, being dominant and widespread species in arid zones, may be effective as a reference organism to ensure comparative assessment across sites of interest. The results of this study will improve the confidence of environmental assessments in arid zones.


Asunto(s)
Monitoreo de Radiación , Australia , Radioisótopos , Estaciones del Año , Suelo
2.
Environ Sci Technol ; 55(4): 2369-2380, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33507750

RESUMEN

Chalcopyrite, galena, and sphalerite commonly coexist with pyrite in sulfidic waste rocks. The aim of this work was to investigate their impact, potentially by galvanic interaction, on pyrite oxidation and acid generation rates under simulated acid and metalliferous drainage conditions. Kinetic leach column experiments using single-minerals and pyrite with one or two of the other sulfide minerals were carried out at realistic sulfide contents (total sulfide <5.2 wt % for mixed sulfide experiments), mimicking sulfidic waste rock conditions. Chalcopyrite was found to be most effective in limiting pyrite oxidation and acid generation with 77-95% reduction in pyrite oxidation over 72 weeks, delaying decrease in leachate pH. Sphalerite had the least impact with reduction of pyrite dissolution by 26% over 72 weeks, likely because of the large band gap and poor conductivity of sphalerite. Galena had a smaller impact than chalcopyrite on pyrite oxidation, despite their similar band gaps, possibly because of the greater extent of oxidation and the significantly reduced surface areas of galena (area reductions of >47% for galena vs <1.5% for chalcopyrite) over 72 weeks. The results are directly relevant to mine waste storage and confirm that the galvanic interaction plays a role in controlling acid generation in multisulfide waste even at low sulfide contents (several wt %) with small probabilities (≤0.23%) of direct contact between sulfide minerals in mixed sulfide experiments.


Asunto(s)
Minerales , Sulfuros , Ácidos , Estrés Oxidativo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA