Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 126(46): 8682-8694, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36350276

RESUMEN

The kinetics and mechanisms of the gas-phase reactions of NO3 radical with two branched unsaturated aldehydes, 2-methyl-2-butenal (also called 2-methyl-crotonaldehyde) and 3-methyl-2-butenal (or 3-methyl-crotonaldehyde), have been investigated by experimental and theoretical approaches. Kinetic data were also provided, for comparison, for 2-butenal (or crotonaldehyde). Experiments were performed in a simulation chamber at 295 ± 3 K and atmospheric pressure. Rate constants were determined using both absolute and relative rate methods. Experimental results were found to be in good agreement leading to the following rate constants (in cm3 molecule-1 s-1): k(2-butenal + NO3) = (4.6 ± 1.3) × 10-15; k(2-methyl-2-butenal + NO3) = (14.0 ± 2.8) × 10-15; and k(3-methyl-2-butenal + NO3) = (19.1 ± 4.1) × 10-15. Theoretical calculations were also performed using the DFT-BH&HLYP/6-311++G(d,p) method and lead to rate constants in agreement with experiments and allow us to explore mechanisms for abstraction and addition pathways. Impact on atmospheric chemistry is discussed.

2.
J Phys Chem A ; 120(17): 2691-9, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27073983

RESUMEN

The gas-phase reactions of five methoxyphenols (three disubstituted and two trisubstituted) with nitrate radicals were studied in an 8000 L atmospheric simulation chamber at atmospheric pressure and 294 ± 2 K. The NO3 rate constants were investigated with the relative kinetic method using PTR-ToF-MS and GC-FID to measure the concentrations of the organic compounds. The rate constants (in units of cm(3) molecule(-1) s(-1)) determined were: 2-methoxyphenol (guaiacol; 2-MP), k(2-MP) = (2.69 ± 0.57 × 10(-11); 3-methoxyphenol (3-MP), k(3-MP) = (1.15 ± 0.21) × 10(-11); 4-methoxyphenol (4-MP), k(4-MP) = (13.75 ± 7.97) × 10(-11); 2-methoxy-4-methylphenol, k(2-M-4-MeP) = (8.41 ± 5.58) × 10(-11) and 2,6-dimethoxyphenol (syringol; 2,6-DMP), k(2,6-DMP) = (15.84 ± 8.10) × 10(-11). The NO3 rate constants of the studied methoxyphenols are compared with those of other substituted aromatics, and the differences in the reactivity are construed regarding the substituents (type, number and position) on the aromatic ring. This study was also supplemented by a theoretical approach of the methoxyphenol reactions with nitrate radicals. The upper limits of the NO3 overall rate constants calculated were in the same order of magnitude than those experimentally determined. Theoretical calculations of the minimum energies of the adducts formed from the reaction of NO3 radicals with the methoxyphenols were also performed using a DFT approach (M06-2X/6-31G(d,p)). The results indicate that the NO3 addition reactions on the aromatic ring of the methoxyphenols are exothermic, with energy values ranging between -13 and -21 kcal mol(-1), depending on the environment of the carbon on which the oxygen atom of NO3 is attached. These energy values allowed identifying the most suitable carbon sites for the NO3 addition on the aromatic ring of the methoxyphenols: at the exception of the 3-MP, the NO3 ipso-addition to the hydroxyl group is one of the favored sites for all the studies compounds.

3.
J Phys Chem A ; 118(28): 5149-55, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24987934

RESUMEN

The density functional theory with the BH&HLYP functional has been used in this work to clarify discrepancies found in the literature about the effect of the increasing carbon chain on the reactivity of trans-2-alkenals from acrolein (C3) to trans-2-octenal (C8) with nitrate radical. In this work, it was found that (i) the alkyl chain length of the unsaturated aldehydes has little or no influence on the NO3 reaction rate coefficients (ii) the abstraction of the aldehydic hydrogen from the alkenal is always dominant (83% for trans-2-butanal to trans-2-octenal). The addition channel, which mainly concerns the ß addition, has a small influence (17% of the total reaction for the whole series). These results are in good agreement with the experimental studies performed by Zhao et al. in 2011 and by Kerdouci et al. in 2012. All these findings will be useful to complete or improve structure-activity relationships developed to predict the reactivity of NO3 radicals with organic compounds.

4.
Phys Chem Chem Phys ; 16(32): 17315-26, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25020144

RESUMEN

A flash photolysis-resonance fluorescence (FP-RF) system was used to study the p-cymene (PC) + OH reaction at temperatures between 299 and 349 K in helium. Triexponential functions were fitted to groups of observed OH decay curves according to a model considering a reversible addition to form two adducts as thermolabile reservoirs of OH. Compared to Part 1 of this paper, consideration of a second adduct strongly improved the fits to our measurements, and the rate constants for the major pathways were optimized between 299 and 349 K. The Arrhenius expression for the rate constant of the sum of OH addition and H-atom abstraction pathways was found to be kOH = 1.9 × 10(-12) exp[(610 ± 210) K/T] cm(3) s(-1). Rate constants of unimolecular decomposition reactions of the adducts were similar to other aromatic compounds with the following Arrhenius expressions: 1 × 10(12) exp[(-7600 ± 800) K/T] s(-1) for adduct 1 and 4 × 10(11) exp[(-8000 ± 300) K/T] s(-1) for adduct 2. Adduct yields increased and decreased with temperature for adduct 1 and 2, respectively, but were similar (∼0.4) around room temperature. Equilibrium constants yielded values for reaction enthalpies and entropies of adduct formations. While for one adduct reasonable agreement was obtained with theoretical predictions, there were significant deviations for the other adduct. This indicates the presence of more than two adduct isomers that were not accounted for in the reaction model. Quantum chemical calculations (DFT M06-2X/6-31G(d,p)) and RRKM kinetics were employed with the aim of clarifying the mechanism of the OH addition to PC. These calculations show that formation of adducts with OH in ortho positions to the isopropyl and methyl substituents is predominant (55% and 24%) to those with OH in ipso positions (21% and 3%). A large fraction (>90%) of the ipso-C3H7 adduct is predicted to react by dealkylation forming p-cresol (in the absence of oxygen) and isopropyl radicals. These theoretical results agree well with the interpretation of the experimental results showing that the two ortho adducts (which appeared as OH reservoirs in the experiment) have been observed.


Asunto(s)
Gases/química , Radical Hidroxilo/química , Monoterpenos/química , Cimenos
5.
J Phys Chem A ; 116(50): 12189-97, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23199339

RESUMEN

Aromatic hydrocarbons are important components of polluted ambient air. The reaction of OH radicals with hexamethylbenzene (HMB) is a prototype system to study ipso addition leading eventually to dealkylation. We have investigated the OH + HMB and OD + HMB reactions between 323 and 433 K using a discharge fast-flow reactor coupled to a time-of-flight mass spectrometer with single-photon VUV photoionization (10.54 eV). The H atom abstraction channel has been found to be equal to (13.7 ± 4.4) % at 330 K leading to (11.1 ± 3.6) % at 298 K, higher than predicted by commonly used structure-reactivity relationships. The back dissociation rate constant has also been measured and has been found to be smaller than the rate of other aromatic hydrocarbons, in good agreement with density functional theoretical calculations. The dealkylation channel, leading to pentamethylphenol (PMP) + CH(3), is always found to be the minor channel, estimated inferior to 2% at 298 K.

6.
Chemphyschem ; 11(18): 4088-96, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21110375

RESUMEN

Quantum calculations are used to study the interaction of water molecules with carbonaceous clusters containing one single carbon atom vacancy. This is a simple but realistic way to model the active surfaces found in soot emitted by aircrafts. Prior to water adsorption, the atomic vacancy is oxidised by an approaching oxygen molecule, which is also likely to occur behind planes. The results of the calculations show that this oxidation process results in the formation of one ketone-like site and one epoxide-like site around the atomic vacancy. These sites may act as nucleation centers for water molecules, which are, however, physisorbed on the oxidized surface, leading to very weak charge transfer with the surface. Although less attractive for water than, for instance, a carboxyl-like site, the ketone-like site can also participate in the hydrophilic behavior of soot primary particles. In contrast, the epoxide-like site formed around the vacancy shows a very low affinity for water molecules.


Asunto(s)
Carbono , Modelos Químicos , Nanopartículas , Oxígeno/química , Hollín , Agua/química , Adsorción , Carbono/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Oxidación-Reducción , Hollín/química , Propiedades de Superficie
7.
Phys Chem Chem Phys ; 12(1): 115-22, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20024450

RESUMEN

An alternative methodology to investigate indirect polyatomic processes with quasi-classical trajectories is proposed, which effectively avoids any binning or weighting procedure while provides rovibrational resolution. Initial classical states are started in terms of angle-action variables to closely match the quantum experimental conditions and later transformed into Cartesian coordinates, following an algorithm very recently published [J. Chem. Phys. 2009, 130, 114103]. Trajectories are then propagated using the 'association' picture, i.e. an inverse dynamics simulation in the spirit of the exit-channel corrected phase space theory of Hamilton and Brumer [J. Chem. Phys. 1985, 82, 595], which is shown to be particularly convenient. Finally, an approximate quasi-classical formula is provided which under general conditions can be used to add possible rotational structures into the vibrationally-resolved quasi-classical distributions. To introduce the method and illustrate its capabilities, correlated translational energy distributions from recent experiments in the photo-dissociation of ketene at 308 nm [J. Chem. Phys. 2006, 124, 014303] are investigated. Quite generally, the overall theoretical algorithm reduces the total number of trajectories to integrate and allows for fully theoretical predictions of experiments on polyatomics.

8.
J Phys Chem A ; 113(42): 11327-42, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19780600

RESUMEN

The influence of water vapor on the production of nitric acid in the gas-phase HO(2) + NO reaction was determined at 298 K and 200 Torr using a high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer. The yield of HNO(3) was found to increase linearly with the increase of water concentration reaching an enhancement factor of about 8 at [H(2)O] = 4 x 10(17) molecules cm(-3) ( approximately 50% relative humidity). A rate constant value k(1bw) = 6 x 10(-13) cm(3) molecule(-1) s(-1) was derived for the reaction involving the HO(2)xH(2)O complex: HO(2)xH(2)O + NO --> HNO(3) (1bw), assuming that the water enhancement is due to this reaction. k(1bw) is approximately 40 times higher than the rate constant of the reaction HO(2) + NO --> HNO(3) (1b), at the same temperature and pressure. The experimental findings are corroborated by density functional theory (DFT) calculations performed on the H(2)O/HO(2)/NO system. The significance of this result for atmospheric chemistry and chemical amplifier instruments is briefly discussed. An appendix containing a detailed consideration of the possible contribution from the surface reactions in our previous studies of the title reaction and in the present one is included.

9.
Phys Chem Chem Phys ; 10(46): 6998-7009, 2008 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19030596

RESUMEN

In this paper, molecular dynamic simulations are used to study the adsorption of water molecules on partially oxidized graphite surfaces containing COOH and OH sites. More specially, the competition between the OH and COOH sites with respect to water adsorption is characterized at three different temperatures (200, 250 and 300 K). The simulations show a strong preferential clustering of the water molecules around the COOH sites irrespective of the temperature. The present results also show that the OH sites can influence the water adsorption process at high temperature, if their local density on the surface is sufficiently large. In this situation, the dynamics of the adsorption process is shown to depend on the distribution of these OH sites on the surface. These results give insights into the water adsorption mechanisms on oxidized graphite surfaces constituting, for example, black carbons or soot particles emitted by aircraft.

10.
J Chem Phys ; 128(24): 244308, 2008 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-18601333

RESUMEN

The possible existence of a complex-forming pathway for the H+O(2) reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O(2)(v=0,j=1)-->OH(v(')=1,j('))+O process reasonably well.


Asunto(s)
Hidrógeno/química , Modelos Estadísticos , Oxígeno/química , Teoría Cuántica , Radical Hidroxilo/química , Termodinámica
11.
J Chem Phys ; 128(17): 174307, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18465922

RESUMEN

The dynamics of the singlet channel of the Si+O(2)-->SiO+O reaction is investigated by means of quasiclassical trajectory (QCT) calculations and two statistical based methods, the statistical quantum method (SQM) and a semiclassical version of phase space theory (PST). The dynamics calculations have been performed on the ground (1)A(') potential energy surface of Dayou and Spielfiedel [J. Chem. Phys. 119, 4237 (2003)] for a wide range of collision energies (E(c)=5-400 meV) and initial O(2) rotational states (j=1-13). The overall dynamics is found to be highly sensitive to the selected initial conditions of the reaction, the increase in either the collisional energy or the O(2) rotational excitation giving rise to a continuous transition from a direct abstraction mechanism to an indirect insertion mechanism. The product state properties associated with a given collision energy of 135 meV and low rotational excitation of O(2) are found to be consistent with the inverted SiO vibrational state distribution observed in a recent experiment. The SQM and PST statistical approaches, especially designed to deal with complex-forming reactions, provide an accurate description of the QCT total integral cross sections and opacity functions for all cases studied. The ability of such statistical treatments in providing reliable product state properties for a reaction dominated by a competition between abstraction and insertion pathways is carefully examined, and it is shown that a valuable information can be extracted over a wide range of selected initial conditions.

12.
J Chem Phys ; 126(18): 184308, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-17508804

RESUMEN

First quasiclassical trajectory calculations have been carried out for the C(3P)+OH(X 2Pi)-->CO(X 1Sigma+)+H(2S) reaction using a recent ab initio potential energy surface for the ground electronic state, X 2A', of HCO/COH. Total and state-specific integral cross sections have been determined for a wide range of collision energies (0.001-1 eV). Then, thermal and state-specific rate constants have been calculated in the 1-500 K temperature range. The thermal rate constant varies from 1.78x10(-10) cm3 s-1 at 1 K down to 5.96x10(-11) cm3 s-1 at 500 K with a maximum value of 3.39x10(-10) cm3 s-1 obtained at 7 K. Cross sections and rate constants are found to be almost independent of the rovibrational state of OH.

13.
Phys Chem Chem Phys ; 8(18): 2163-71, 2006 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-16751874

RESUMEN

The kinetics and the mechanism of the reaction CH(3)C(O)O(2)+ HO(2) were reinvestigated at room temperature using two complementary approaches: one experimental, using flash photolysis/UV absorption technique and one theoretical, with quantum chemistry calculations performed using the density functional theory (DFT) method with the three-parameter hybrid functional B3LYP associated with the 6-31G(d,p) basis set. According to a recent paper reported by Hasson et al., [J. Phys. Chem., 2004, 108, 5979-5989] this reaction may proceed by three different channels: CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OOH + O(2) (1a); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OH + O(3) (1b); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)O + OH + O(2) (1c). In experiments, CH(3)C(O)O(2) and HO(2) radicals were generated using Cl-initiated oxidation of acetaldehyde and methanol, respectively, in the presence of oxygen. The addition of amounts of benzene in the system, forming hydroxycyclohexadienyl radicals in the presence of OH, allowed us to answer that channel (1c) is <10%. The rate constant k(1) of reaction (1) has been finally measured at (1.50 +/- 0.08) x 10(-11) cm(3) molecule(-1) s(-1) at 298 K, after having considered the combination of all the possible values for the branching ratios k(1a)/k(1,)k(1b)/k(1,)k(1c)/k(1) and has been compared to previous measurements. The branching ratio k(1b)/k(1), determined by measuring ozone in situ, was found to be equal to (20 +/- 1)%, a value consistent with the previous values reported in the literature. DFT calculations show that channel (1c) is also of minor importance: it was deduced unambiguously that the formation of CH(3)C(O)OOH + O(2) (X (3)Sigma(-)(g)) is the dominant product channel, followed by the second channel (1b) leading to CH(3)C(O)OH and singlet O(3) and, much less importantly, channel (1c) which corresponds to OH formation. These conclusions give a reliable explanation of the experimental observations of this work. In conclusion, the present study demonstrates that the CH(3)C(O)O(2)+ HO(2) is still predominantly a radical chain termination reaction in the tropospheric ozone chain formation processes.


Asunto(s)
Acetaldehído/química , Atmósfera/química , Ozono/química , Absorción , Benceno/química , Cloro/química , Cinética , Metanol/química , Estructura Molecular , Nitrógeno/química , Oxígeno/química , Fotólisis , Teoría Cuántica , Rayos Ultravioleta
14.
J Phys Chem A ; 110(4): 1608-17, 2006 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-16435823

RESUMEN

A theoretical study of H(2) and D(2) desorbing from Cu(111) is reported. The study makes use of the LEPS PES of Dai and Zhang [J. Chem. Phys. 1995, 102, 6280]. The LEPS parameters have been modified in order to lower the barrier threshold in conformity with accurate ab initio electronic structure calculations. The topological study of the modified PES by the CHAIN method reveals unambiguously that the transition state (TS) is located at the top of a unique early barrier along the desorption path. The adsorbed H atoms are supposed to be in thermal equilibrium with the metal surface. Batches of classical trajectories (CT) are then carried out from the TS onto the products with their initial conditions canonically distributed and the effect of their possible recrossing of the TS taken into account according to Keck's method [Discuss. Faraday Soc. 1962, 33, 173]. Product state distributions are then calculated using the Gaussian weighting procedure [Chem. Phys. Lett. 2004, 397, 106] to account for the quantization of the vibration motion of the desorbed diatom. These distributions are in overall good agreement with experimental measurements. On average, the early barrier to desorption results in a significant vibrational excitation of the final diatom and a strong deexcitation of its rotational angular momentum J from the TS onto the products. Moreover, the orientation of the rotation plane is roughly random for low values of J (both cartwheel and helicopter motions are observed) while it is more likely parallel to the metal surface for large values of J (predominance for helicopter motion). These findings are analyzed in some details.

15.
Phys Chem Chem Phys ; 7(20): 3540-4, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16294228

RESUMEN

When the energy available to the products of a barrierless unimolecular reaction is of the order of 100 cm(-1), phase space theory leads usually to a good description of product state distributions. This is no longer the case for energies of the order of 1000 cm(-1). It seems, for example, that the excitation of the recoil energy distribution is underestimated by the theory as suggested by experimental results on the photodissociations of C(2)O and NCO. As an alternative, we propose a statisticodynamical approach of the previous processes based in part on transition state theory and in part on assumptions relative to the dynamics in the exit-channel. The recoil energy distributions obtained are now in good agreement with the measured ones, in spite of the simplicity of their mathematical expressions.


Asunto(s)
Transferencia de Energía , Matemática , Termodinámica
16.
J Chem Phys ; 120(8): 3665-78, 2004 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15268529

RESUMEN

Traditional statistical approaches, entirely based on transition state theory (TST), do not allow the description of rotational state distributions in the products of indirect reactions governed by short-range forces. Owing to the interpretative power of TST, this limitation has long been acting as a brake upon a deep understanding of determining attributes of indirect reaction dynamics. Recently, however, we developed a statisticodynamical approach (SDA) of final state distributions for triatomic unimolecular reactions [P. Larregaray, L. Bonnet, and J. C. Rayez, J. Chem. Phys. 114, 3349 (2001); Phys. Chem. Chem. Phys. 4, 1577 (2002); 4, 1781 (2002)]. The approach combines TST for the description of state distributions at the transition state (TS) and the linear transformation model for the description of their alteration on the way from the TS to the products. The whole description is mostly analytical, thus keeping the rationalizing spirit of TST. The goal of the present series is to extend SDA to the case of four-atom planar unimolecular reactions, assuming that internal vibrations of the nascent products are conserved from the TS on. This first part is concerned with formal developments while the remaining parts deal with their validation and application, in particular to the fragmentation of isocyanic acid.

17.
J Chem Phys ; 120(8): 3679-87, 2004 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15268530

RESUMEN

In the first part of this series, we proposed a statisticodynamical approach of state distributions in the products of four-atom planar unimolecular reactions governed by short-range forces. In this second part, the approach is tested against quasiclassical trajectory calculations on an ab initio potential energy surface. The process considered is the fragmentation of isocyanic acid in the first excited singlet electronic state. The study leads to a very good agreement between both methods. In addition to that, we pinpoint in the barrier case the main mechanical parameters governing the shape of rotational state distributions. It appears that these parameters are related to two distinct physical effects. The first one is of the impulsive type. The second, already observed in triatomic processes, is the so-called bending effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA