Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 12(2): 815-824, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31830194

RESUMEN

The growth of compound semiconductors on silicon has been widely sought after for decades, but reliable methods for defect-free combination of these materials have remained elusive. Recently, interconnected GaAs nanoscale membranes have been used as templates for the scalable integration of nanowire networks on III-V substrates. Here, we demonstrate how GaAs nanoscale membranes can be seamlessly integrated on silicon by controlling the density of nuclei in the initial stages of growth. We also correlate the absence or presence of defects with the existence of a single or multiple nucleation regime for the single membranes. Certain defects exhibit well-differentiated spectroscopic features that we identify with cathodoluminescence and micro-photoluminescence techniques. Overall, this work presents a new approach for the seamless integration of compound semiconductors on silicon.

2.
Nanomaterials (Basel) ; 9(6)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195647

RESUMEN

GaAs nanomembranes grown by selective area epitaxy are novel structures. The high refractive index of GaAs makes them good candidates for nanoantennas. We numerically studied the optical modal structure of the resonator. The nanomembrane geometry introduces a strong light-polarization dependence. The scattering is dominated by an electric dipole contribution for polarization along the nanomembrane long dimension and by a magnetic dipole contribution in the orthogonal direction. The dependence on the geometry of the resonances close to the GaAs band gap was modeled by a single coefficient. It describes the resonance shifts against up-to 40% changes in length, height, and width. We showed that the nanomembranes exhibited field enhancement, far-field directionality, and tunability with the GaAs band gap. All these elements confirm their great potential as nanoantennas.

3.
Ultramicroscopy ; 146: 33-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24929924

RESUMEN

In this work we examined MoS2 sheets by aberration-corrected scanning transmission electron microscopy (STEM) at three different energies: 80, 120 and 200 kV. Structural damage of the MoS2 sheets has been controlled at 80 kV according a theoretical calculation based on the inelastic scattering of the electrons involved in the interaction electron-matter. The threshold energy for the MoS2 material has been found and experimentally verified in the microscope. At energies higher than the energy threshold we show surface and edge defects produced by the electron beam irradiation. Quantitative analysis at atomic level in the images obtained at 80 kV has been performed using the experimental images and via STEM simulations using SICSTEM software to determine the exact number of MoS22 layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA