Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(29): 34550-34560, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264624

RESUMEN

Flexible, lightweight, low-power, and low-cost displays are an active area of interest in the electronics community. In this work, we have developed a composite electrothermochromic material consisting of silver nanowires (Ag NWs) and thermochromic powders, which exhibits reversible color (phase) change during biasing due to Joule heating. A wide variety of color combinations are possible with suitable thermochromic material selection. We have formulated this composite material as a printable ink so that patterned deposition can be achieved in a single step. A low processing temperature of 100 °C makes the composite compatible with a wide range of flexible substrates such as paper and polyethylene terephthalate (PET). The material (encapsulated with polydimethylsiloxane (PDMS)) exhibits good flexibility and is observed to be functional after 10 000 bending cycles with <7% resistance change. We have fabricated a low-power seven-segment color display to show the material's suitability for practical display applications. We have also demonstrated that the same layer can function as a display and as a touch sensor because of its conducting and chromatic properties without additional active layers on top. The material is suitable for the fabrication of low-cost, flexible touch color displays for interactive electronic readers, digital posters, and flexible digital signboards.

2.
Nanoscale Adv ; 3(2): 432-445, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36131744

RESUMEN

Understanding the electrical conduction properties of a single nanostructure is essential for gaining insight into the fundamental charge transport through 1D materials and also for exploring the collective behavior of an array of such nanostructures. TiO2 nanostructures, such as electrochemically grown nanotubes, have been widely studied in recent times for several applications. The electrolyte plays a vital role in deciding the morphology, which, in turn, governs the charge transport behavior. Here we present a comparative study of the charge transport through a single TiO2 nanotube grown by electrochemical anodization using ethylene glycol and dimethyl sulphoxide electrolytes. The individual nanotubes are assembled into nanodevices using photolithography without relying on complex and sophisticated process like electron beam lithography or focused ion beam deposition. The electric field dependent charge transport properties show Schottky emission at a lower field regime and Poole-Frenkel emission in the higher region. The temperature-dependent electrical conduction (110 K-410 K) is mediated by two thermal activation processes, attributed to shallow impurities in the low-temperature range (T < 230 K) and to the donors at deep intermediate levels at higher temperatures (T > 230 K). The activation energies for EG based nanotubes are found to be higher than those for DMSO nanotubes owing to the double wall morphology of the formed tubes. Also, the study of the electrical breakdown phenomena of these nanotubes reveals three distinct categories of collapse. 'Model A' type breakdown is characterized by a stepwise rise of the current up to the breakdown point and a fall to zero following a non-uniform step by step decrease, which is driven by crack formation near the electrode interface and its propagation. 'Model B' shows a transient rise and fall in current, leading to breakdown due to electromigration, whereas 'Model C' type breakdown observed in a bundle of nanotubes shows a mixed trend of 'Model A' and 'Model B'. The data and analysis provide insight into the current limit through an individual nanotube or bundle of nanotubes and will be useful for designing prototype nanodevices from titania nanostructures.

3.
Adv Mater ; 29(12)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28145601

RESUMEN

A method for resolving the diffusion length of excitons and the extraction yield of charge carriers is presented based on the performance of organic bilayer solar cells and careful modeling. The technique uses a simultaneous variation of the absorber thickness and the excitation wavelength. Rigorously differing solar cell structures as well as independent photoluminescence quenching measurements give consistent results.

4.
ACS Omega ; 2(11): 7576-7583, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023558

RESUMEN

This article adds a new direction to the functional capability of protein-protected atomically precise gold clusters as sensors. Counting on the extensively researched intense luminescence of these clusters and considering the electron donating nature of select amino acids, we introduce a dual probe sensor capable of sensing changes in luminescence and conductivity, utilizing bovine serum albumin-protected atomically precise gold clusters hosted on nanofibers. To this end, we have also developed a hybrid nanofiber with a conducting core with a porous dielectric shell. We show that clusters in combination with nanofibers offer a highly selective and sensitive platform for the detection of trace quantities of trinitrotoluene, both in solution and in the vapor phase. In the solution phase, trinitrotoluene (TNT) can be detected down to 1 ppt at room temperature, whereas in vapor phase, 4.8 × 109 molecules of TNT can be sensed using a 1 mm fiber. Although the development in electrospinning techniques for fabricating nanofibers as sensors is quite substantial, a hybrid fiber with the dual properties of conductivity and luminescence has not been reported yet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA