Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(2): 298-311, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35997255

RESUMEN

A drug combination, vancomycin (VAN) plus tetrahydrolipstatin (THL), has demonstrated an effective synergistic action in vitro against Mycobacterium tuberculosis (Mtb). The poor oral bioavailability of VAN and THL and the predominant tropism of Mtb infection to the lungs make their pulmonary administration very attractive. To evaluate their local tolerability, bronchial cells, alveolar cells and monocytes were exposed to concentrations around and above their minimal inhibitory concentration (MIC). The VAN had no inhibitory activity on the tested human cell lines, even at a concentration 125 times higher than its MIC, whereas the THL, alone or in combination with VAN, presented a cytostatic action. Monolayer epithelium showed no significant irreversible damage at concentrations up to 100 times the combination MIC. BALB/cAnNRj mice exposed to concentration of 50 times the combination MIC delivered endotracheally 3 times a week for 3 weeks showed no clinical signs or significant weight loss. The increase of proinflammatory biomarkers (i.e., IL-1, IL-6, TNF-α and proportion of inflammatory cells) and cytotoxicity in bronchoalveolar lavage fluid (BALF) were non-significant. Lung histopathology did not show significant tissue damage. The VAN/THL combination at doses up to 50 times the combination MIC is found to be thus well tolerated by pulmonary route. This study is a promising result and encouraging further investigations of pulmonary administration of VAN/THL combination as dry powder for anti-tuberculosis treatment.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Humanos , Ratones , Animales , Antituberculosos/toxicidad , Pulmón , Líquido del Lavado Bronquioalveolar , Células Epiteliales Alveolares , Orlistat/farmacología , Vancomicina
2.
Microorganisms ; 7(3)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30818784

RESUMEN

Pathogenic mycobacteria are able to persist intracellularly in macrophages, whereas non-pathogenic mycobacteria are effectively combated and eliminated after their phagocytosis. It is known that TGF-ß plays an important role in this context. Infection with pathogenic mycobacteria such as Mycobacterium tuberculosis or M. avium leads to production of active TGF-ß, which blocks the ability of IFN-γ and TNF-α to inhibit intracellular replication. On the other hand, it is known that the long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) is involved in the regulation of TGF-ß. In this study, we show how the infection of THP-1-derived human macrophages with the saprophytic M. smegmatis but not with the facultatively pathogenic M. avium subsp. hominissuis leads to increased MEG3 expression. This is associated with the downregulation of DNA methyltransferases (DNMT) 1 and 3b, which are known to regulate MEG3 expression via promoter hypermethylation. Consequently, we observe a significant downregulation of TGF-ß in M. smegmatis-infected macrophages but not in M. avium subsp. hominissuis pointing to lncRNAs as novel mediators of host cell response during mycobacterial infections.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30642937

RESUMEN

Accumulating evidence suggests that the bactericidal activity of some antibiotics may not be directly initiated by target inhibition. The activity of isoniazid (INH), a key first-line bactericidal antituberculosis drug currently known to inhibit mycolic acid synthesis, becomes extremely poor under stress conditions, such as hypoxia and starvation. This suggests that the target inhibition may not fully explain the bactericidal activity of the drug. Here, we report that INH rapidly increased Mycobacterium bovis BCG cellular ATP levels and enhanced oxygen consumption. The INH-triggered ATP increase and bactericidal activity were strongly compromised by Q203 and bedaquiline, which inhibit mycobacterial cytochrome bc1 and FoF1 ATP synthase, respectively. Moreover, the antioxidant N-acetylcysteine (NAC) but not 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) abrogated the INH-triggered ATP increase and killing. These results reveal a link between the energetic (ATP) perturbation and INH's killing. Furthermore, the INH-induced energetic perturbation and killing were also abrogated by chemical inhibition of NADH dehydrogenases (NDHs) and succinate dehydrogenases (SDHs), linking INH's bactericidal activity further to the electron transport chain (ETC) perturbation. This notion was also supported by the observation that INH dissipated mycobacterial membrane potential. Importantly, inhibition of cytochrome bd oxidase significantly reduced cell recovery during INH challenge in a culture settling model, suggesting that the respiratory reprogramming to the cytochrome bd oxidase contributes to the escape of INH killing. This study implicates mycobacterial ETC perturbation through NDHs, SDHs, cytochrome bc1, and FoF1 ATP synthase in INH's bactericidal activity and pinpoints the participation of the cytochrome bd oxidase in protection against this drug under stress conditions.


Asunto(s)
Antituberculosos/farmacología , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Transporte de Electrón/efectos de los fármacos , Isoniazida/farmacología , Mycobacterium bovis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Grupo Citocromo b/antagonistas & inhibidores , Diarilquinolinas/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Imidazoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA