Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(8): 2899-2912, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39087267

RESUMEN

The control of malaria, a disease caused by Plasmodium parasites that kills over half a million people every year, is threatened by the continual emergence and spread of drug resistance. Therefore, new molecules with different mechanisms of action are needed in the antimalarial drug development pipeline. Peptides developed from host defense molecules are gaining traction as anti-infectives due to theood of inducing drug resistance. Human platelet factor 4 (PF4) has intrinsic activity against P. falciparum, and a macrocyclic helix-loop-helix peptide derived from its active domain recapitulates this activity. In this study, we used a stepwise approach to optimize first-generation PF4-derived internalization peptides (PDIPs) by producing analogues with substitutions to charged and hydrophobic amino acid residues or with modifications to terminal residues including backbone cyclization. We evaluated the in vitro activity of PDIP analogues against P. falciparum compared to their overall helical structure, resistance to breakdown by serum proteases, selective binding to negatively charged membranes, and hemolytic activity. Next, we combined antiplasmodial potency-enhancing substitutions that retained favorable membrane and cell-selective properties onto the most stable scaffold to produce a backbone cyclic PDIP analogue with four-fold improved activity against P. falciparum compared to first-generation peptides. These studies demonstrate the ability to modify PDIP to select for and combine desirable properties and further validate the suitability of this unique peptide scaffold for developing a new molecule class that is distinct from existing antimalarial drugs.


Asunto(s)
Antimaláricos , Péptidos , Plasmodium falciparum , Factor Plaquetario 4 , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Humanos , Factor Plaquetario 4/química , Factor Plaquetario 4/farmacología , Péptidos/farmacología , Péptidos/química , Relación Estructura-Actividad
3.
Biochem Soc Trans ; 51(1): 41-56, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36815717

RESUMEN

Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales , Animales , Dinámicas Mitocondriales/fisiología , Mitocondrias/metabolismo , Muerte Celular , Transducción de Señal , Macrófagos/metabolismo , Proteínas Mitocondriales/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA