Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(37): 22705-22711, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32839319

RESUMEN

Black carbon (BC) aerosol plays an important role in the Earth's climate system because it absorbs solar radiation and therefore potentially warms the climate; however, BC can also act as a seed for cloud particles, which may offset much of its warming potential. If BC acts as an ice nucleating particle (INP), BC could affect the lifetime, albedo, and radiative properties of clouds containing both supercooled liquid water droplets and ice particles (mixed-phase clouds). Over 40% of global BC emissions are from biomass burning; however, the ability of biomass burning BC to act as an INP in mixed-phase cloud conditions is almost entirely unconstrained. To provide these observational constraints, we measured the contribution of BC to INP concentrations ([INP]) in real-world prescribed burns and wildfires. We found that BC contributes, at most, 10% to [INP] during these burns. From this, we developed a parameterization for biomass burning BC and combined it with a BC parameterization previously used for fossil fuel emissions. Applying these parameterizations to global model output, we find that the contribution of BC to potential [INP] relevant to mixed-phase clouds is ∼5% on a global average.


Asunto(s)
Carbono/química , Cambio Climático , Agua/química , Incendios Forestales , Aerosoles , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/química , Carbono/efectos adversos , Hielo/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA