Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274783

RESUMEN

The processing of pure copper (Cu) has been a challenge for laser-based additive manufacturing for many years since copper powders have a high reflectivity of up to 83% of electromagnetic radiation at a wavelength of 1070 nm. In this study, Cu particles were coated with sub-micrometer tungsten (W) particles to increase the laser beam absorptivity. The coated powders were processed by powder bed fusion-laser beam for metals (PBF-LB/M) with a conventional laser system of <300 watts laser power and a wavelength of 1070 nm. Two different powder manufacturing routes were developed. The first manufacturing route was gas atomization combined with a milling process by a planetary mill. The second manufacturing method was gas atomization with particle co-injection, where a separate W particle jet was sprayed into the atomized Cu jet. As part of the investigations, an extensive characterization of powder and additively manufactured test specimens was carried out. The specimens of Cu/W powders manufactured by the milling process have shown superior results. The laser absorptivity of the Cu/W powder was increased from 22.5% (pure Cu powder) to up to 71.6% for powders with 3 vol% W. In addition, a relative density of test specimens up to 98.2% (optically) and 95.6% (Archimedes) was reached. Furthermore, thermal conductivity was measured by laser flash analysis (LFA) and thermo-optical measurement (TOM). By using eddy current measurement, the electrical conductivity was analyzed. In comparison to the Cu reference, a thermal conductivity of 88.9% and an electrical conductivity of 85.8% were determined. Moreover, the Vickers hardness was measured. The effect of porosity on conductivity properties and hardness was investigated and showed a linear correlation. Finally, a demonstrator was built in which a wall thickness of down to 200 µm was achieved. This demonstrates that the Cu/W composite can be used for heat exchangers, heat sinks, and coils.

2.
Chemphyschem ; 21(15): 1644-1652, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32558311

RESUMEN

A conical microstructure is one of the most versatile surface textures obtained by ultrashort laser micromachining. Besides an increased surface area, unique surface properties such as superhydrophilicity, increased absorptivity; and thermal emissivity can be tailored. On metals, usually ultrashort laser pulses in the femtosecond to low picosecond range are used to obtain these surface structures, whereas nanosecond laser pulses favor melting processes. Herein, we report on an investigation of reactive gas atmospheres such as oxygen, steam, and halogens during laser micromachining of aluminum with 6 ns laser pulses. At a reduced pressure of 20 hPa (air) with additional iodine vapor as reactive species, we found a perfectly microconical structured surface to be formed with nanosecond laser pulses. The resulting surface structures were proven to be free of residual halogens. The application of nanosecond instead of femtosecond laser pulses for the surface structuring process allows to apply significantly less complex laser sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA