Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Open ; 10(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34494647

RESUMEN

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable but showed a 25-30% growth-rate slowdown. Moreover, we found an increase of SERPINB2 mRNA expression in human MSC while expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/sangre , Células Madre Mesenquimatosas/virología , Proteínas Virales/sangre , Animales , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratas , Serogrupo , Factor de Células Madre/metabolismo , Tropismo Viral/genética
2.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339427

RESUMEN

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Pericardio/metabolismo , Factor de Células Madre/metabolismo , Tejido Adiposo/citología , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Pericardio/fisiología , Ratas , Ratas Wistar , Regeneración , Factor de Células Madre/genética
3.
J Vasc Res ; 43(5): 437-46, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16899994

RESUMEN

Myofibroblasts are involved in vessel remodeling during the development of hypertension as well as after angioplasty and aortocoronary grafting, but the mechanisms of myofibroblastic phenotypic modulation are not fully elucidated. We assessed the role of urokinase plasminogen activator (uPA) and its proteolytic activity in myofibroblast differentiation and the early proliferation following mechanical injury of the rat carotid adventitia. The effects of perivascular application of recombinant uPA (r-uPA), proteolytically inactive r-uPA(H/Q) and uPA neutralizing antibody were evaluated 4 days after surgical injury to the adventitia. The phenotype of adventitial cells was assessed using anti-alpha-smooth muscle actin (alpha-SM actin) antibody, anti-SM heavy chain myosin, anti-high-molecular-weight caldesmon, anti-smoothelin and anti-ED-1 antibodies, proliferation by the expression of proliferating cell nuclear antigen, and the size of the adventitia by quantitative morphometry. Four days after injury, the intensive immunostaining for urokinase appeared in the rat carotid artery adventitia. At the same time, the frequency of alpha-SM actin-positive adventitial cells was 1.8+/-1.1% in uninjured arteries and 25.2+/-5.4% in injured arteries (p<0.05), and the respective frequency of ED-1-positive cells 1.5+/-1.1 and 25.0+/-5.2%. The application of exogenous r-uPA doubled the numbers of alpha-SM actin-positive adventitial cells to 55.7+/-6.8% (p<0.05). ED-1-positive cells and proliferating cell nuclear antigen-positive cells as well as the size of the adventitia were also significantly increased after r-uPA compared with injury alone. In contrast, the proteolytically inactive r-uPA(H/Q) did not affect any parameters. The application of uPA neutralizing antibody attenuated the frequency of alpha-SM actin-positive cells to 12.6+/-3.5% (p<0.05), the frequency of ED-1-positive cells, and the numbers of adventitial cells. r-uPA stimulation of cultured human skin fibroblasts significantly increased the alpha-SM actin content in a concentration-dependent manner. In contrast, r-uPAH/Q did not induce changes in alpha-SM actin content. We conclude that uPA, which is upregulated in the injured adventitia, can augment adventitial cell accumulation, including myofibroblasts, and adventitia growth early after injury of the rat carotid artery adventitia by mechanisms involving proteolysis.


Asunto(s)
Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/patología , División Celular/fisiología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Recuento de Células , Tejido Conectivo/enzimología , Tejido Conectivo/lesiones , Tejido Conectivo/patología , Fibroblastos/citología , Humanos , Masculino , Ratas , Ratas Endogámicas WKY , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA