Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 289(17): 11816-11828, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24619423

RESUMEN

Beyond its presence in stable microtubules, tubulin acetylation can be boosted after UV exposure or after nutrient deprivation, but the mechanisms of microtubule hyperacetylation are still unknown. In this study, we show that this hyperacetylation is a common response to several cellular stresses that involves the stimulation of the major tubulin acetyltransferase MEC-17. We also demonstrate that the acetyltransferase p300 negatively regulates MEC-17 expression and is sequestered on microtubules upon stress. We further show that reactive oxygen species of mitochondrial origin are required for microtubule hyperacetylation by activating the AMP kinase, which in turn mediates MEC-17 phosphorylation upon stress. Finally, we show that preventing microtubule hyperacetylation by knocking down MEC-17 affects cell survival under stress conditions and starvation-induced autophagy, thereby pointing out the importance of this rapid modification as a broad cell response to stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acetiltransferasas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Secuencia de Bases , Línea Celular , Humanos , Ratones , Microtúbulos/metabolismo , ARN Interferente Pequeño
2.
J Biol Chem ; 285(31): 24184-94, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20484055

RESUMEN

The molecular mechanisms underlying microtubule participation in autophagy are not known. In this study, we show that starvation-induced autophagosome formation requires the most dynamic microtubule subset. Upon nutrient deprivation, labile microtubules specifically recruit markers of autophagosome formation like class III-phosphatidylinositol kinase, WIPI-1, the Atg12-Atg5 conjugate, and LC3-I, whereas mature autophagosomes may bind to stable microtubules. We further found that upon nutrient deprivation, tubulin acetylation increases both in labile and stable microtubules and is required to allow autophagy stimulation. Tubulin hyperacetylation on lysine 40 enhances kinesin-1 and JIP-1 recruitment on microtubules and allows JNK phosphorylation and activation. JNK, in turn, triggers the release of Beclin 1 from Bcl-2-Beclin 1 complexes and its recruitment on microtubules where it may initiate autophagosome formation. Finally, although kinesin-1 functions to carry autophagosomes in basal conditions, it is not involved in motoring autophagosomes after nutrient deprivation. Our results show that the dynamics of microtubules and tubulin post-translational modifications play a major role in the regulation of starvation-induced autophagy.


Asunto(s)
Autofagia , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Acetilación , Proteínas Reguladoras de la Apoptosis/química , Beclina-1 , Dineínas/química , Células HeLa , Humanos , Cinesinas/química , Lisina/química , Proteínas de la Membrana/química , Modelos Biológicos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA