Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136773

RESUMEN

Coumarins are compounds with scientifically proven antibacterial properties, and modifications to the chemical structure are known to improve their effects. This information is even more relevant with the unbridled advances of antibiotic resistance, where Staphylococcus aureus and its efflux pumps play a prominent role. The study's objective was to evaluate the potential of synthetic coumarins with different substitutions in the C-3 position as possible inhibitors of the NorA and MepA efflux pumps of S. aureus. For this evaluation, the following steps took place: (i) the determination of the minimum inhibitory concentration (MIC); (ii) the association of coumarins with fluoroquinolones and ethidium bromide (EtBr); (iii) the assessment of the effect on EtBr fluorescence emission; (iv) molecular docking; and (v) an analysis of the effect on membrane permeability. Coumarins reduced the MICs of fluoroquinolones and EtBr between 50% and 87.5%. Coumarin C1 increased EtBr fluorescence emission between 20 and 40% by reinforcing the evidence of efflux inhibition. The molecular docking results demonstrated that coumarins have an affinity with efflux pumps and establish mainly hydrogen bonds and hydrophobic interactions. Furthermore, C1 did not change the permeability of the membrane. Therefore, we conclude that these 3-substituted coumarins act as inhibitors of the NorA and MepA efflux pumps of S. aureus.

2.
Zoologia (Curitiba) ; 36: e.31791, Nov. 25, 2019. ilus
Artículo en Inglés | VETINDEX | ID: vti-24607

RESUMEN

The present study aimed to investigate the macroscopic structure of the gastrointestinal tract (GIT) of Schizothorax esocinus Heckel, 1838. The surface architecture of the buccopharynx, oesophagus and the entire intestinal tract of S. esocinus has been examined under scanning electron microscope (SEM) after fixing in 2.5% glutaraldehyde buffered with 0.1 M sodium cacodylate at pH 7.3 for 18-48 hours and post-fixation for two hours at room temperature in 1% osmium tetra oxide buffered at pH 7.3 with 0.1 M cacodylate. The mucosal surface of buccopharynx, esophagus, intestinal bulb, and intestine reveal prominent longitudinal major or primary mucosal folds which are further subdivided into the series of irregular and well-circumscribed folds called minor or secondary folds. However, in the intestinal bulb and intestine, the longitudinal major or primary folds themselves form wavy or zigzagging patterns along the mucosal surface. The fine structure of the surface epithelium further shows that the apical surfaces of the epithelial cells are ped with finger-print like microridges, arranged in various patterns and regularly spaced. The rectal mucosa, on the other hand, displays a highly irregular type of major mucosal folds. The separation cant be seen between major mucosal folds. A thin film of mucous spread over the mucosal folds and the numerous pores through which mucous cells release their content has also been noted along the rectal mucosa. This investigation suggests the possible role of different digestive organs in relation to feeding, digestion, storage, absorption, and various other physiological processes, thereby providing a knowledge necessary to the understanding of pathological or physiological alterations in both aquaculture and natural environment.(AU)


Asunto(s)
Animales , Cyprinidae , Tracto Gastrointestinal/anatomía & histología , Esófago/anatomía & histología , Especificidad de la Especie
3.
Zoologia (Curitiba, Impr.) ; 36: e.31791, Apr. 18, 2019. ilus
Artículo en Inglés | VETINDEX | ID: biblio-1504564

RESUMEN

The present study aimed to investigate the macroscopic structure of the gastrointestinal tract (GIT) of Schizothorax esocinus Heckel, 1838. The surface architecture of the buccopharynx, oesophagus and the entire intestinal tract of S. esocinus has been examined under scanning electron microscope (SEM) after fixing in 2.5% glutaraldehyde buffered with 0.1 M sodium cacodylate at pH 7.3 for 18-48 hours and post-fixation for two hours at room temperature in 1% osmium tetra oxide buffered at pH 7.3 with 0.1 M cacodylate. The mucosal surface of buccopharynx, esophagus, intestinal bulb, and intestine reveal prominent longitudinal major or primary mucosal folds which are further subdivided into the series of irregular and well-circumscribed folds called minor or secondary folds. However, in the intestinal bulb and intestine, the longitudinal major or primary folds themselves form wavy or zigzagging patterns along the mucosal surface. The fine structure of the surface epithelium further shows that the apical surfaces of the epithelial cells are ped with finger-print like microridges, arranged in various patterns and regularly spaced. The rectal mucosa, on the other hand, displays a highly irregular type of major mucosal folds. The separation can’t be seen between major mucosal folds. A thin film of mucous spread over the mucosal folds and the numerous pores through which mucous cells release their content has also been noted along the rectal mucosa. This investigation suggests the possible role of different digestive organs in relation to feeding, digestion, storage, absorption, and various other physiological processes, thereby providing a knowledge necessary to the understanding of pathological or physiological alterations in both aquaculture and natural environment.


Asunto(s)
Animales , Cyprinidae , Esófago/anatomía & histología , Tracto Gastrointestinal/anatomía & histología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA