Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 76: 233-241, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482522

RESUMEN

In this study, an evaluation was performed to determine the in vitro bioactivity, viability of stem cells, and antibiofilm effect against Streptococcus mutans of two bioactive gel-glass 60SiO2-36CaO-4P2O5 (BG-A) and 80SiO2-15CaO-5P2O5 (BG-B) compositions. Both materials were bioactive and undergo the formation of hydroxycarbonate apatite (HCA) on their surfaces when immersed in simulated body fluid (SBF) after 12h, but the BG-A composition showed a more significant formation rate. The pH variation of the samples during the test in SBF indicated that an abrupt change had occurred for the BG-A composition within the first few hours, and the pH was subsequently maintained over time, supporting its stronger antibacterial effects against S. mutans. For the in vitro viability test using mesenchymal stem cells (MSCs), the BG-B showed significantly higher cell viability compared to the BG-A composition at concentrations of 0.125, 1.25 and 12.50mg/mL for 2days. These results indicated that the higher solubility of the BG-A glass favors bioactivity and antibacterial effects. However, as a result of rapid degradation, the increase in the concentration of ions in the cell culture medium was not favorable for cell proliferation. Thus, by varying the composition of glasses, and consequently their dissolution rate, it is possible to favor bioactivity, antimicrobial activity or stem cell proliferation for a particular application of interest.


Asunto(s)
Streptococcus mutans , Materiales Biocompatibles , Biopelículas , Líquidos Corporales , Supervivencia Celular , Geles , Vidrio , Células Madre
2.
Microsc Res Tech ; 75(6): 758-65, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22213178

RESUMEN

The purpose of this study was to compare the inorganic content and morphology of one nanofilled and one nanohybrid composite with one universal microhybrid composite. The Vickers hardness, degree of conversion and scanning electron microscope of the materials light-cured using LED unit were also investigated. One nanofilled (Filtek™ Supreme XT), one nanohybrid (TPH®(3)) and one universal microhybrid (Filtek™ Z-250) composite resins at color A(2) were used in this study. The samples were made in a metallic mould (4 mm in diameter and 2 mm in thickness). Their filler weight content was measured by thermogravimetric analysis (TG). The morphology of the filler particles was determined using scanning electron microscope equipped with a field emission gun (SEM-FEG). Vickers hardness and degree of conversion using FT-IR spectroscopy were measured. Filtek™ Z-250 (microhybrid) composite resin shows higher degree of conversion and hardness than those of Filtek™ Supreme XT (nanofilled) and TPH®(3) (nanohybrid) composites, respectively. The TPH(3)® (nanohybrid) composite exhibits by far the lowest mechanical property. Nanofilled composite resins show mechanical properties at least as good as those of universal hybrids and could thus be used for the same clinical indications as well as for anterior restorations due to their high aesthetic properties.


Asunto(s)
Resinas Compuestas/química , Compuestos Inorgánicos/análisis , Nanoestructuras/análisis , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA