Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 347: 123746, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460585

RESUMEN

Mitigating pharmaceutical pollution in the global environment is imperative, and tetracycline (TC) is a commonly utilized antibiotic in human and veterinary medicine. The persistent existence of TC highlights the necessity of establishing efficient measures to protect water systems and the environment from detrimental contaminants. Herein, a novel rhubarb seed waste-derived activated carbon-supported photocatalyst (WO3-ZnO/RUAC) was synthesized by combining wet impregnation and ultrasonic methods. The activated carbon (AC) was obtained from rhubarb seed waste for the first time via chemical activation. The function of AC as an electron acceptor and in separating electron-hole pairs was illuminated by characterization analyses that included XRD, FTIR, XPS, SEM, TEM, PL, EIS, TPC, and UV-DRS. Using the response surface methodology-central composite design (RSM-CCD) technique, the synthesis parameters of the composite were systematically optimized. Under ideal conditions, with a TC concentration of 33 mg. L-1, pH of 4.57, irradiation time of 108 min, and catalyst dose of 0.85 g. L-1, the highest degradation efficiency of TC by this composite, achieved 96.5%, and it was reusable for five cycles. Subsequently, trapping tests and electron spin resonance (ESR) analysis were conducted, elucidating that •OH and •O2- radicals played pivotal roles in the photocatalytic degradation of TC. This research offers valuable insights into utilizing the AC-based photocatalyst to degrade pharmaceutical micropollutants effectively.


Asunto(s)
Óxido de Zinc , Antibacterianos/química , Catálisis , Carbón Orgánico , Luz , Preparaciones Farmacéuticas , Tetraciclina/química , Tungsteno , Óxido de Zinc/química
2.
Environ Res ; 223: 115484, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36775091

RESUMEN

The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Bentonita/química , Cloruros , Ecosistema , Termodinámica , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA