Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiologyopen ; 10(1): e1175, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650794

RESUMEN

Microbial methane oxidation is a major biofilter preventing larger emissions of this powerful greenhouse gas from marine coastal areas into the atmosphere. In these zones, various electron acceptors such as sulfate, metal oxides, nitrate, or oxygen can be used. However, the key microbial players and mechanisms of methane oxidation are poorly understood. In this study, we inoculated a bioreactor with methane- and iron-rich sediments from the Bothnian Sea to investigate microbial methane and iron cycling under low oxygen concentrations. Using metagenomics, we investigated shifts in microbial community composition after approximately 2.5 years of bioreactor operation. Marker genes for methane and iron cycling, as well as respiratory and fermentative metabolism, were identified and used to infer putative microbial metabolism. Metagenome-assembled genomes representing novel Verrucomicrobia, Bacteroidetes, and Krumholzibacteria were recovered and revealed a potential for methane oxidation, organic matter degradation, and iron cycling, respectively. This work brings new hypotheses on the identity and metabolic versatility of microorganisms that may be members of such functional guilds in coastal marine sediments and highlights that microorganisms potentially composing the methane biofilter in these sediments may be more diverse than previously appreciated.


Asunto(s)
Bacteroidetes/metabolismo , Reactores Biológicos/microbiología , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Metano/metabolismo , Verrucomicrobia/metabolismo , Anaerobiosis/fisiología , Bacteroidetes/crecimiento & desarrollo , Finlandia , Microbiota , Océanos y Mares , Oxidación-Reducción , Oxígeno/metabolismo , Suecia , Verrucomicrobia/crecimiento & desarrollo
2.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33579680

RESUMEN

Microbial mats, due to stratification of the redox zones, have a potential to include a complete N cycle, however an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico under oxic and anoxic conditions using 15N-labeling techniques. All of the major N transformation pathways, with the exception of anammox, were detected in both microbial mats. Nitrification rates were found to be low at both sites for both seasons investigated. The highest rates of ammonium assimilation were measured in Elkhorn Slough mats in April and corresponded to high in situ ammonium concentration in the overlying water. Baja mats featured higher ammonification than ammonium assimilation rates and this, along with their higher affinity for nitrate compared to ammonium and low dissimilatory nitrate reduction to ammonium rates, characterized their differences from Elkhorn Slough mats. Nitrogen fixation rates in Elkhorn Slough microbial mats were found to be low implying that other processes such as recycling and assimilation from water are main sources of N for these mats at the times sampled. Denitrification in all of the mats was incomplete with nitrous oxide as end product and not dinitrogen. Our findings highlight N cycling features not previously quantified in microbial mats and indicate a need of further investigations in these microbial ecosystems.Importance: Nitrogen is essential for life. The nitrogen cycle on Earth is mediated by microbial activity and has had a profound impact on both the atmosphere and the biosphere throughout geologic time. Microbial mats, present in many modern environments, have been regarded as living records of the organisms, genes, and phylogenies of microbes, as they are one of the most ancient ecosystems on Earth. While rates of major nitrogen metabolic pathways have been evaluated in a number of ecosystems, it remains elusive in microbial mats. In particular it is unclear what factors affect nitrogen cycling in these ecosystems and how morphological differences between mats impact nitrogen transformations. In this study we investigate nitrogen cycling in two microbial mats having morphological differences. Our findings provide insight for further understanding of biogeochemistry and microbial ecology of microbial mats.

3.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30291120

RESUMEN

"Candidatus Methanoperedens nitroreducens" is an archaeon that couples the anaerobic oxidation of methane to nitrate reduction. In natural and man-made ecosystems, this archaeon is often found at oxic-anoxic interfaces where nitrate, the product of aerobic nitrification, cooccurs with methane produced by methanogens. As such, populations of "Ca Methanoperedens nitroreducens" could be prone to regular oxygen exposure. Here, we investigated the effect of 5% (vol/vol) oxygen exposure in batch activity assays on a "Ca Methanoperedens nitroreducens" culture, enriched from an Italian paddy field. Metagenome sequencing of the DNA extracted from the enrichment culture revealed that 83% of 16S rRNA gene reads were assigned to a novel strain, "Candidatus Methanoperedens nitroreducens Verserenetto." RNA was extracted, and metatranscriptome sequencing upon oxygen exposure revealed that the active community changed, most notably in the appearance of aerobic methanotrophs. The gene expression of "Ca Methanoperedens nitroreducens" revealed that the key genes encoding enzymes of the methane oxidation and nitrate reduction pathways were downregulated. In contrast to this, we identified upregulation of glutaredoxin, thioredoxin family/like proteins, rubrerythrins, peroxiredoxins, peroxidase, alkyl hydroperoxidase, type A flavoproteins, FeS cluster assembly protein, and cysteine desulfurases, indicating the genomic potential of "Ca Methanoperedens nitroreducens Verserenetto" to counteract the oxidative damage and adapt in environments where they might be exposed to regular oxygen intrusion.IMPORTANCE "Candidatus Methanoperedens nitroreducens" is an anaerobic archaeon which couples the reduction of nitrate to the oxidation of methane. This microorganism is present in a wide range of aquatic environments and man-made ecosystems, such as paddy fields and wastewater treatment systems. In such environments, these archaea may experience regular oxygen exposure. However, "Ca Methanoperedens nitroreducens" is able to thrive under such conditions and could be applied for the simultaneous removal of dissolved methane and nitrogenous pollutants in oxygen-limited systems. To understand what machinery "Ca Methanoperedens nitroreducens" possesses to counteract the oxidative stress and survive, we characterized the response to oxygen exposure using a multi-omics approach.


Asunto(s)
Anaerobiosis/fisiología , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Methanosarcinales/metabolismo , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Anaerobiosis/genética , Proteínas Arqueales/genética , Reactores Biológicos , Hidrolasas de Éster Carboxílico/metabolismo , ADN de Archaea/aislamiento & purificación , Ecosistema , Flavoproteínas/metabolismo , Glutarredoxinas/metabolismo , Hemeritrina/metabolismo , Metagenoma , Metano/metabolismo , Methanosarcinales/clasificación , Methanosarcinales/genética , Nitratos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Peroxidasa/metabolismo , Peroxirredoxinas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Rubredoxinas/metabolismo , Análisis de Secuencia , Tiorredoxinas/metabolismo , Regulación hacia Arriba , Aguas Residuales/microbiología , Purificación del Agua
4.
Environ Microbiol ; 20(12): 4314-4327, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968310

RESUMEN

Arctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH 4 ) and carbon dioxide (CO 2 ). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiag˙vik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4°C) and the IPCC 2013 Arctic climate change scenario (10°C) after addition of methanogenic and methanotrophic substrates for nearly a year. Trimethylamine (TMA) amendment with warming showed highest maximum CH 4 production rates, being 30% higher at 10°C than at 4°C. Maximum methanotrophic rates increased by up to 57% at 10°C compared to 4°C. 16S rRNA gene sequencing indicated high relative abundance of Methanosarcinaceae in TMA amended incubations, and for methanotrophic incubations Methylococcaeae were highly enriched. Anaerobic methanotrophic activity with nitrite or nitrate as electron acceptor was not detected. This study indicates that the methane cycling microbial community can adapt to temperature increases and that their activity is highly dependent on substrate availability.


Asunto(s)
Sedimentos Geológicos/microbiología , Lagos , Methylococcaceae/metabolismo , Microbiota , Alaska , Regiones Árticas , Dióxido de Carbono/metabolismo , Cambio Climático , Metano/metabolismo , Methanosarcinaceae , Nutrientes , ARN Ribosómico 16S/genética , Temperatura
5.
Microbiologyopen ; 6(4)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28544522

RESUMEN

The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)-based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N2 , but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR-based technique. The results reveal the importance of various N-cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players.


Asunto(s)
Archaea/enzimología , Bacterias/enzimología , Biota , Sedimentos Geológicos/microbiología , Ciclo del Nitrógeno , Nitrógeno/metabolismo , Aerobiosis , Anaerobiosis , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metagenoma , Océanos y Mares , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Environ Microbiol Rep ; 8(6): 941-955, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27753265

RESUMEN

Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.


Asunto(s)
Bacterias/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Anaerobiosis , Oxidación-Reducción
7.
Environ Sci Technol ; 49(1): 277-83, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25412274

RESUMEN

Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.


Asunto(s)
Sedimentos Geológicos , Hierro/metabolismo , Metano/metabolismo , Agua/química , Ciclo del Carbono , Compuestos Férricos , Metano/química , Oxidación-Reducción , Óxidos , Salinidad , Sulfatos
8.
Appl Environ Microbiol ; 80(8): 2451-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509918

RESUMEN

Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic community in the environment is not necessarily revealed by (13)C-depleted lipids.


Asunto(s)
Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Metano/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA