Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 918: 170374, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307267

RESUMEN

Carbonaceous aerosols play a vital role in global climate patterns due to their potent light absorption capabilities. However, the light absorption enhancement effect (Eabs) of black carbon (BC) is still subject to great uncertainties due to factors such as the mixing state, coating material, and particle size distribution. In this study, fine particulate matter (PM2.5) samples were collected in Chengdu, a megacity in the Sichuan Basin, during the winter of 2020 and 2021. The chemical components of PM2.5 and the light absorption properties of BC were investigated. The results revealed that secondary inorganic aerosols and carbonaceous aerosols were the dominant components in PM2.5. Additionally, the aerosol filter filtration-dissolution (AFD) treatment could improve the accuracy of measuring elemental carbon (EC) through thermal/optical analysis. During winter in Chengdu, the absorption enhancement values of BC ranged between 1.56 and 2.27, depending on the absorption wavelength and the mixing state of BC and non-BC materials. The presence of internally mixed BC and non-BC materials significantly contributed to Eabs, accounting for an average of 68 % at 405 nm and 100 % at 635 nm. The thickness of the BC coating influenced Eabs, displaying an increasing-then-decreasing trend. This trend was primarily attributed to the hygroscopic growth and dehydration shrinkage of particulate matter. Nitrate, as the major component of BC coating, played a crucial role in the lensing effect and exhibited fast growth during variation in Eabs. By combining the results from PMF, we identified the secondary formation and vehicle emission as the primary contributors to Eabs. Consequently, this study can provide valuable insights into the optical parameters, which are essential for assessing the environmental quality, improving regional atmospheric conditions, and formulating effective air pollution control strategies.

2.
Environ Monit Assess ; 192(8): 511, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661736

RESUMEN

The observation and analysis of volatile organic compounds (VOCs) were conducted during January 2018 in nine prefecture-level cities of Sichuan, China, covering the period of heavily polluted weather. Air samples collected in nine prefecture-level cities were analyzed using a preconcentration method coupled with GC-MS/FID. The characteristics and ozone generation potential (OFP) of VOCs were analyzed. The relationship between air quality index (AQI) and VOCs and gross domestic product (GDP) and VOCs were also discussed, respectively. The results show that the characteristics of VOCs in cities are highly related to their industrial structure and GDP. Generally, areas with high AQI values are accompanied by high VOC concentrations. Alkanes and halocarbons were the most abundant VOCs in the atmospheric environment in the nine prefecture-level cities, accounting for 24.5~61.6% and 15.6~23.6% of total VOC concentration, respectively. The MIR method was used to analyze the OFP, and olefins contributed the most to ozone formation. Among the nine cities located in Sichuan, Dazhou was found to be the city with the highest OFP value (1191.49 µg/m3).


Asunto(s)
Contaminantes Atmosféricos/análisis , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis , China , Ciudades , Monitoreo del Ambiente
3.
J Environ Sci (China) ; 89: 35-46, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31892400

RESUMEN

The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Incendios , Material Particulado/análisis , Aerosoles , Biomasa , China , Ciudades , Estaciones del Año
4.
Sci Total Environ ; 661: 354-363, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30682602

RESUMEN

Lead (Pb) in individual aerosol particles was measured using a single particle aerosol mass spectrometer at an urban site in Chengdu, a typical basin city of China, for four one-month periods in 2016-2017 - one period for each season. The highest mass concentrations of particulate matter (PM) and gaseous species (CO, NO, NO2, and SO2) were observed in winter. Cluster analysis was applied to Pb-containing particles, and eight major classes were identified based on mass spectral features. The contribution of these classes to the total Pb-containing particles varied seasonally - for example, Pb-nitrate (PbNO3) particles showed a higher contribution in spring and winter (47%), while Pb-sulfate (PbSO4) particles exhibited a higher contribution in summer and autumn (14%-19%). The size range of particles also changed with seasons as a result of different sources and formation mechanisms under different climatic conditions. A weighted potential source contribution function (WPSCF) analysis suggested that the potential source areas of Pb-containing particles were mainly located to the northeast, east, southeast, and south of Chengdu, and their contribution intensity and coverage area significantly varied in the four seasons. Although almost all pollutants decreased during the Spring Festival holiday (SF) period, fireworks caused the most serious PM and SO2 pollution episodes during the whole study period. During the SF period, the contributions of industrial and traffic-related particles (Pb-organic + elemental carbon (PbOE) and PbNO3 particles) decreased, whereas those of Pb-chloride (PbCl), Pb-metal (PbM), and Pb-sulfate + nitrate (PbSN) particles increased due to fireworks. Results from this study may provide valuable information for a deeper understanding of Pb in particles and evaluation its impacts on atmospheric environment and human health.

5.
Environ Sci Pollut Res Int ; 26(3): 2649-2661, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30478772

RESUMEN

To investigate the characteristics and formation mechanisms of haze pollution in the autumn season in the Sichuan Basin, hourly concentrations of water-soluble inorganic ions in PM2.5 (Na+, K +, NH4+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) and major gaseous precursors (HCl, NH3, SO2, HONO, and HNO3) were measured by a gas and aerosol collector combined with ion chromatography (GAC-IC) from September to November 2017 at an urban site in Chengdu. The average mass concentration of total water-soluble ions was 36.9 ± 29.4 µg m-3, accounting for 62.8% of PM2.5 mass. Nitrate was the most abundant ion, comprising 41.2% of the total ions, followed by sulfate (27.1%) and ammonium (18.1%), indicating the important contribution of motor vehicle emissions to PM2.5 in Chengdu. Secondary formation of inorganic ions and biomass burning emissions played a vital role in the haze pollution processes. The formation of nitrate aerosol was particularly dominant and exhibited the most substantial increase during haze processes. It was likely to be produced primarily through homogeneous reactions, whereas heterogeneous reactions dominated sulfate formation. Additionally, distinct differences in diurnal patterns of secondary inorganic ions between clean days and polluted days were observed, reflecting different formation characteristics under polluted conditions. Due to a large increase of acidic aerosols, most particles collected on polluted days were acidic, and ammonium in most samples existed mainly as NH4HSO4 and NH4NO3. Furthermore, backward-trajectory cluster analysis revealed that air masses originating from the northeast of Chengdu prevailed in the autumn season, and haze pollution was dominated mainly by short-distance transport within the Sichuan Basin.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Estaciones del Año , Aerosoles/análisis , China , Gases/análisis , Nitratos/análisis , Material Particulado/análisis , Sulfatos/análisis , Emisiones de Vehículos/análisis , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA