Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 95(8): e28974, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37515526

RESUMEN

Mpox virus, a member of genus Orthopoxvirus, causes rash and flu-like symptoms in humans. In the recent global outbreak, it was reported from several geographical areas that have not historically reported mpox. Point of care, sensitive and specific mpox diagnostic assays are critical in checking the spread of the disease. We have developed a clustered regularly interspaced short palindromic repeats associated Cas12a nuclease-based assay for detecting mpox virus. Mpox specific conserved sequences were identified in polA (E9L) gene which differ by a single nucleotide polymorphism (SNP) from all the viruses present in the genus Orthopoxvirus. This SNP was exploited in our assay to specifically distinguish mpox virus from other related orthopox viruses with a limit of detection of 1 copy/µl in 30 min. The assay exhibits a sensitive and specific detection of mpox virus which can prove to be of practical value for its surveillance in areas infected with multiple orthopox viruses, especially in hotspots of mpox virus infections.


Asunto(s)
Mpox , Orthopoxvirus , Humanos , Sistemas CRISPR-Cas , Monkeypox virus , Orthopoxvirus/genética , Bioensayo
2.
J Appl Microbiol ; 133(2): 410-421, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35396760

RESUMEN

AIM: The current scenario of COVID-19 pandemic has presented an almost insurmountable challenge even for the most sophisticated hospitals equipped with modern biomedical technology. There is an urgency to develop simple, fast and highly accurate methods for the rapid identification and isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. To address the ongoing challenge, the present study offers a CLEVER assay (CRISPR-Cas integrated RT-LAMP Easy, Visual and Extraction-free RNA) which will allow RNA extraction-free method to visually diagnose COVID-19. RNA extraction is a major hurdle in preventing rapid and large-scale screening of samples particularly in low-resource regions because of the logistics and costs involved. METHOD AND RESULT: Herein, the visual SARS-CoV-2 detection method consists of RNA extraction-free method directly utilizing the patient's nasopharyngeal and oropharyngeal samples for reverse transcription loop-mediated isothermal amplification (RT-LAMP). Additionally, the assay also utilizes the integration of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12-based system using different guide RNAs of N, E and an internal control POP7 (human RNase P) genes along with visual detection via lateral flow readout-based dip sticks with unaided eye (~100 min). Overall, the clinical sensitivity and specificity of the CLEVER assay were 89.6% and 100%, respectively. CONCLUSION: Together, our CLEVER assay offers a point-of-care tool with no equipment dependency and minimum technical expertise requirement for COVID-19 diagnosis. SIGNIFICANCE AND IMPACT OF THE STUDY: To address the challenges associated with COVID-19 diagnosis, we need a faster, direct and more versatile detection method for an efficient epidemiological management of the COVID-19 outbreak. The present study involves developing a method for detection of SARS-CoV-2 in human body without RNA isolation step that can visually be detected with unaided eye. Taken together, our assay offers to overcome one major defect of the prior art, that is, RNA extraction step, which could limit the deployment of the previous assays in a testing site having limited lab infrastructure.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Sistemas CRISPR-Cas , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , ARN , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad , Tecnología
3.
Biotechnol Rep (Amst) ; 33: e00709, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35242619

RESUMEN

Tributyl phosphate (TBP) is extensively used in nuclear industry and is a major environmental pollutant. The mechanism for TBP degradation is not identified in any TBP-degrading bacteria. Here, we report identification of an acid phosphatase from Sphingobium sp. RSMS (Aps) that exhibits high specific activity towards monobutyl phosphate (MBP) and could be a terminal component of the TBP degradation process. A genomic DNA library of the bacteria was screened using a histochemical method which yielded 35 phosphatase clones. Among these, the clone that showed the highest MBP degradation was studied further. DNA sequence analysis showed that the genomic insert encodes a protein (Aps) which belongs to class C acid phosphatase. The recombinant Aps was found to be a dimer and hydrolysed MBP with a Kcat 68.1 ± 5.46 s- 1 and Km 2.5 mM ± 0.50. The protein was found to be nonspecific for phosphatase activity and hydrolyzed disparate organophosphates.

4.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060264

RESUMEN

Sphingobium sp. strain RSMS was described earlier as an efficient degrader of tributyl phosphate, an organic pollutant. This report describes the generation and annotation of the genome sequence of Sphingobium sp. strain RSMS, which will facilitate future studies to identify genetic elements responsible for the degradation of tributyl phosphate.

5.
Appl Microbiol Biotechnol ; 100(1): 461-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26399413

RESUMEN

A tri- and dibutyl phosphate (TBP/DBP) non-degrading spontaneous mutant, Sphingobium SS22, was derived from the Sphingobium sp. strain RSMS (wild type). Unlike the wild type strain, Sphingobium SS22 could not grow in a minimal medium supplemented with TBP or DBP as the sole source of carbon or phosphorous. Sphingobium SS22 also did not form any of the intermediates or end products of TBP or DBP degradation, namely DBP, butanol or inorganic phosphate. Proteomic analysis revealed the absence of three prominent proteins in Sphingobium SS22 as compared to wild type. These proteins were identified by MALDI mass spectrometry, and they showed similarities to phosphohydrolase- and exopolyphosphatase-like proteins from other bacteria, which belong to the class of phosphoesterases. Cellular proteins of Sphingobium SS22 showed none or negligible phosphodiesterase (PDE) and phosphomonoesterase (PME) activities at pH 7 and displayed approximately five- and approximately twofold less DBP and monobutyl phosphate (MBP) degradation activity, respectively, in comparison to the wild type strain. In-gel zymographic analysis revealed two PDE and PME activity bands in the wild type strain, one of which was absent in the Sphingobium SS22 mutant. The corresponding proteins from the wild type strain could degrade DBP and MBP. The results demonstrate the involvement of phosphoesterase enzymes in the TBP degradation pathway elucidated earlier.


Asunto(s)
Organofosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Sphingomonadaceae/enzimología , Sphingomonadaceae/metabolismo , Biotransformación , Carbono/metabolismo , Medios de Cultivo/química , Proteoma/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sphingomonadaceae/química , Sphingomonadaceae/crecimiento & desarrollo
6.
Appl Microbiol Biotechnol ; 98(5): 2289-96, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23963271

RESUMEN

A Sphingobium sp. strain isolated from radioactive solid waste management site (RSMS) completely degraded 7.98 g/L of tributyl phosphate (TBP) from TBP containing suspensions in 3 days. It also completely degraded 20 mM dibutyl phosphate (DBP) within 2 days. The strain tolerated high levels of TBP and showed excellent stability with respect to TBP degradation over several repeated subcultures. On solid minimal media or Luria Bertani media supplemented with TBP, the RSMS strain showed a clear zone of TBP degradation around the colony. Gas chromatography and spectrophotometry analyses identified DBP as the intermediate and butanol and phosphate as the products of TBP biodegradation. The RSMS strain utilized both TBP and DBP as the sole source of carbon and phosphorous for its growth. The butanol released was completely utilized by the strain as a carbon source thereby leaving no toxic residue in the medium. Degradation of TBP or DBP was found to be suppressed by high concentration of glucose which also inhibited TBP or DBP dependent growth. The results highlight the potential of Sphingobium sp. strain RSMS for bioremediation of TBP and for further molecular investigation.


Asunto(s)
Butanoles/metabolismo , Organofosfatos/metabolismo , Fosfatos/metabolismo , Sphingomonadaceae/metabolismo , Biotransformación , Carbono/metabolismo , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingomonadaceae/clasificación , Sphingomonadaceae/crecimiento & desarrollo , Sphingomonadaceae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA