Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 293(12): 4422-4433, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29425096

RESUMEN

Dihydroxyacid dehydratase (DHAD) is the third enzyme required for branched-chain amino acid biosynthesis in bacteria, fungi, and plants. DHAD enzymes contain two distinct types of active-site Fe-S clusters. The best characterized examples are Escherichia coli DHAD, which contains an oxygen-labile [Fe4S4] cluster, and spinach DHAD, which contains an oxygen-resistant [Fe2S2] cluster. Although the Fe-S cluster is crucial for DHAD function, little is known about the cluster-coordination environment or the mechanism of catalysis and cluster biogenesis. Here, using the combination of UV-visible absorption and circular dichroism and resonance Raman and electron paramagnetic resonance, we spectroscopically characterized the Fe-S center in DHAD from Arabidopsis thaliana (At). Our results indicated that AtDHAD can accommodate [Fe2S2] and [Fe4S4] clusters. However, only the [Fe2S2] cluster-bound form is catalytically active. We found that the [Fe2S2] cluster is coordinated by at least one non-cysteinyl ligand, which can be replaced by the thiol group(s) of dithiothreitol. In vitro cluster transfer and reconstitution reactions revealed that [Fe2S2] cluster-containing NFU2 protein is likely the physiological cluster donor for in vivo maturation of AtDHAD. In summary, AtDHAD binds either one [Fe4S4] or one [Fe2S2] cluster, with only the latter being catalytically competent and capable of substrate and product binding, and NFU2 appears to be the physiological [Fe2S2] cluster donor for DHAD maturation. This work represents the first in vitro characterization of recombinant AtDHAD, providing new insights into the properties, biogenesis, and catalytic role of the active-site Fe-S center in a plant DHAD.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hidroliasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/química , Azufre/química , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catálisis , Dicroismo Circular , Hidroliasas/química , Hidroliasas/genética , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Homología de Secuencia , Espectrometría Raman , Azufre/metabolismo
2.
Biochemistry ; 55(49): 6869-6879, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951647

RESUMEN

Two ubiquitous protein families have emerged as key players in iron metabolism, the CGFS-type monothiol glutaredoxins (Grxs) and the BolA proteins. Monothiol Grxs and BolA proteins form heterocomplexes that have been implicated in Fe-S cluster assembly and trafficking. The Escherichia coli genome encodes members of both of these proteins families, namely, the monothiol glutaredoxin Grx4 and two BolA family proteins, BolA and IbaG. Previous work has demonstrated that E. coli Grx4 and BolA interact as both apo and [2Fe-2S]-bridged heterodimers that are spectroscopically distinct from [2Fe-2S]-bridged Grx4 homodimers. However, the physical and functional interactions between Grx4 and IbaG are uncharacterized. Here we show that co-expression of Grx4 with IbaG yields a [2Fe-2S]-bridged Grx4-IbaG heterodimer. In vitro interaction studies indicate that IbaG binds the [2Fe-2S] Grx4 homodimer to form apo Grx4-IbaG heterodimer as well as the [2Fe-2S] Grx4-IbaG heterodimer, altering the cluster stability and coordination environment. Additionally, spectroscopic and mutagenesis studies provide evidence that IbaG ligates the Fe-S cluster via the conserved histidine that is present in all BolA proteins and by a second conserved histidine that is present in the H/C loop of two of the four classes of BolA proteins. These results suggest that IbaG may function in Fe-S cluster assembly and trafficking in E. coli as demonstrated for other BolA homologues that interact with monothiol Grxs.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Histidina/química , Proteínas Hierro-Azufre/química , Factores de Transcripción/química , Calorimetría , Dicroismo Circular , Peso Molecular , Análisis Espectral/métodos
3.
Dalton Trans ; 42(9): 3107-15, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23292141

RESUMEN

Monothiol glutaredoxins (Grxs) are proposed to function in Fe-S cluster storage and delivery, based on their ability to exist as apo monomeric forms and dimeric forms containing a subunit-bridging [Fe(2)S(2)](2+) cluster, and to accept [Fe(2)S(2)](2+) clusters from primary scaffold proteins. In addition yeast cytosolic monothiol Grxs interact with Fra2 (Fe repressor of activation-2), to form a heterodimeric complex with a bound [Fe(2)S(2)](2+) cluster that plays a key role in iron sensing and regulation of iron homeostasis. In this work, we report on in vitro UV-visible CD studies of cluster transfer between homodimeric monothiol Grxs and members of the ubiquitous A-type class of Fe-S cluster carrier proteins ((Nif)IscA and SufA). The results reveal rapid, unidirectional, intact and quantitative cluster transfer from the [Fe(2)S(2)](2+) cluster-bound forms of A. thaliana GrxS14, S. cerevisiae Grx3, and A. vinelandii Grx-nif homodimers to A. vinelandii(Nif)IscA and from A. thaliana GrxS14 to A. thaliana SufA1. Coupled with in vivo evidence for interaction between monothiol Grxs and A-type Fe-S cluster carrier proteins, the results indicate that these two classes of proteins work together in cellular Fe-S cluster trafficking. However, cluster transfer is reversed in the presence of Fra2, since the [Fe(2)S(2)](2+) cluster-bound heterodimeric Grx3-Fra2 complex can be formed by intact [Fe(2)S(2)](2+) cluster transfer from (Nif)IscA. The significance of these results for Fe-S cluster biogenesis or repair and the cellular regulation of the Fe-S cluster status are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hierro/metabolismo , Compuestos de Sulfhidrilo/química , Azufre/metabolismo , Azotobacter vinelandii , Proteínas Bacterianas/química , Transporte Biológico , Multimerización de Proteína , Estructura Cuaternaria de Proteína
4.
Biochemistry ; 51(8): 1687-96, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22309771

RESUMEN

Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.


Asunto(s)
Proteínas Portadoras/química , Proteínas Hierro-Azufre/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Dicroismo Circular , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
5.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 7): m771, 2009 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21582701

RESUMEN

The title complex, [Ni(NCS)(2)(C(18)H(18)N(4))]·0.5CH(3)OH, consists of two crystallographically distinct complexes and a methanol solvent mol-ecule. The Ni(II) complexes are pseudo-octa-hedral six-coordinate, with the tris-(2-pyridylmeth-yl)amine (TPA) ligand providing four N atoms and two N-bound thio-cyanates providing the final two N atoms. The distances and angles are typical for Ni(II)-TPA complexes. The compound has unit-cell parameters that are surprisingly similar to the previously reported hydrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA