Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 104: 110589, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36621727

RESUMEN

We previously reported that CAP1 (Cyclase-Associated Protein 1) regulates matrix adhesion in mammalian cells through FAK (Focal Adhesion Kinase). More recently, we discovered a phosphor-regulation mechanism for CAP1 through the Ser307/Ser309 tandem site that is of critical importance for all CAP1 functions. However, molecular mechanisms underlying the CAP1 function in adhesion and its regulation remain largely unknown. Here we report that Rap1 also facilitates the CAP1 function in adhesion, and more importantly, we identify a novel signaling pathway where CAP1 mediates the cAMP signals, through the cAMP effectors Epac (Exchange proteins directly activated by cAMP) and PKA (Protein Kinase A), to activate Rap1 in stimulating matrix adhesion in colon cancer cells. Knockdown of CAP1 led to opposite adhesion phenotypes in SW480 and HCT116 colon cancer cells, with reduced matrix adhesion and reduced FAK and Rap1 activities in SW480 cells while it stimulated matrix adhesion as well as FAK and Rap1 activities in HCT116 cells. Importantly, depletion of CAP1 abolished the stimulatory effects of the cAMP activators forskolin and isoproterenol, as well as that of Epac and PKA, on matrix adhesion in both cell types. Our results consistently support a required role for CAP1 in the cAMP activation of Rap1. Identification of the key role for CAP1 in linking the major second messenger cAMP to activation of Rap1 in stimulating adhesion, which may potentially also regulate proliferation in other cell types, not only vertically extends our knowledge on CAP biology, but also carries important translational potential for targeting CAP1 in cancer therapeutics.


Asunto(s)
Neoplasias del Colon , AMP Cíclico , Animales , AMP Cíclico/metabolismo , Transducción de Señal/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo , Mamíferos/metabolismo
2.
Mol Cell Biol ; 40(4)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31791978

RESUMEN

Cyclase-associated protein 1 (CAP1) is a conserved actin-regulating protein that enhances actin filament dynamics and also regulates adhesion in mammalian cells. We previously found that phosphorylation at the Ser307/Ser309 tandem site controls its association with cofilin and actin and is important for CAP1 to regulate the actin cytoskeleton. Here, we report that transient Ser307/Ser309 phosphorylation is required for CAP1 function in both actin filament disassembly and cell adhesion. Both the phosphomimetic and the nonphosphorylatable CAP1 mutant, which resist transition between phosphorylated and dephosphorylated forms, had defects in rescuing the reduced rate of actin filament disassembly in the CAP1 knockdown HeLa cells. The phosphorylation mutants also had defects in alleviating the elevated focal adhesion kinase (FAK) activity and the enhanced focal adhesions in the knockdown cells. In dissecting further phosphoregulatory cell signals for CAP1, we found that cyclin-dependent kinase 5 (CDK5) phosphorylates both Ser307 and Ser309 residues, whereas cAMP signaling induces dephosphorylation at the tandem site, through its effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). No evidence supports an involvement of activated protein phosphatase in executing the dephosphorylation downstream from cAMP, whereas preventing CAP1 from accessing its kinase CDK5 appears to underlie CAP1 dephosphorylation induced by cAMP. Therefore, this study provides direct cellular evidence that transient phosphorylation is required for CAP1 functions in both actin filament turnover and adhesion, and the novel mechanistic insights substantially extend our knowledge of the cell signals that function in concert to regulate CAP1 by facilitating its transient phosphorylation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adhesión Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , AMP Cíclico/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Fosforilación , Transducción de Señal/fisiología , Tiazolidinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA