RESUMEN
Monoterpenes are secondary metabolites of plants belonging to the terpenoid class of natural products. They are the most abundant components of essential oils that are generally considered to have various pharmacological properties. These compounds are reported to have antidiabetic effects in recent years. Due to nature's complex biosynthetic machinery, they also exhibit a reasonable degree of structural complexity/diversity for further analysis in structure-activity studies. Therefore, monoterpenes as antidiabetic agents have been investigated by recent in vitro and in vivo studies extensively reported in the scientific literature and claimed by patent documents. The purpose of this survey is to provide a comprehensive and prospective review concerning the potential applications of monoterpenes in the treatment of diabetes. The data for this research were collected through the specialized databases PubMed, Scopus, Web of Science, and ScienceDirect between the years 2014 and 2022, as well as the patent databases EPO, WIPO, and USPTO. The research used 76 articles published in the leading journals in the field. The main effect observed was the antidiabetic activity of monoterpenes. This review showed that monoterpenes can be considered promising agents for prevention and/or treatment of diabetes as well as have a marked pharmaceutical potential for the development of bioproducts for therapeutics applications.
RESUMEN
To improve the availability of three-dimensional (3D) structures of HLA molecules, we created the pHLA3D database. In its first version, we modeled and published 106 3D structures of HLA class I molecules from the HLA-A, HLA-B, and HLA-C loci. This paper presents an update of this database, providing more 127 3D structures of HLA class II molecules (41 DR, 42 DQ, and 44 DP), predicted via homology modeling with MODELLER and SWISS-MODEL. These new 3D structures of HLA class II molecules are now freely available at pHLA3D (www.phla3d.com.br) for immunologists and other researchers working with HLA molecules.
Asunto(s)
Antígenos HLA-DP/ultraestructura , Antígenos HLA-DQ/ultraestructura , Antígenos HLA-DR/ultraestructura , Biología Computacional , Bases de Datos de Proteínas , Humanos , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Programas InformáticosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Ximenia americana L. is popularly known as yellow plum, brave plum or tallow wood. All the parts of this plant are used in popular medicine. Its reddish and smooth bark are used to treat skin infections, inflammation of the mucous membranes and in the wound healing process. OBJECTIVE: Verification of phytochemical profile, the molecular interaction between flavonoid, (-) epi-catechin and 5-LOX enzyme, by means of in silico study, the genotoxic effect and to investigate the pharmacological action of the aqueous extract of the stem bark of X. americana in pulmonary alterations caused by experimental COPD in Rattus norvegicus. MATERIALS AND METHODS: The identification of secondary metabolites was carried out by TLC and HPLC chromatographic methods, molecular anchoring tests were applied to analyze the interaction of flavonoid present in the extract with the enzyme involved in pulmonary inflammation process and the genotoxic effect was assessed by comet assay and micronucleus test. For induction of COPD, male rats were distributed in seven groups. The control group was exposed only to ambient air and six were subjected to passive smoke inhalations for 20â¯min/day for 60 days. One of the groups exposed to cigarette smoke did not receive treatment. The others were treated by inhalation with beclomethasone dipropionate (400 mcg/kg) and aqueous and lyophilized extracts of X. americana (500â¯mg/kg) separately or in combination for a period of 15 days. The structural and inflammatory pulmonary alterations were evaluated by histological examination. Additional morphometric analyses were performed, including the alveolar diameter and the thickness of the right ventricle wall. RESULTS: The results showed that the aqueous extract of the bark of X. americana possesses (-) epi -catechin, in silico studies with 5-LOX indicate that the EpiC ligand showed better affinity parameters than the AracA ligand, which is in accordance with the results obtained in vivo studies. Genotoxity was not observed at the dose tested and the extract was able to stagnate the alveolar enlargement caused by the destruction of the interalveolar septa, attenuation of mucus production and decrease the presence of collagen fibers in the bronchi of animals submitted to cigarette smoke. CONCLUSION: Altogether, the results proved that the aqueous extract of X. americana presents itself as a new option of therapeutic approach in the treatment of COPD.
Asunto(s)
Daño del ADN/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Olacaceae/química , Extractos Vegetales/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/farmacología , Brasil , Modelos Animales de Enfermedad , Etnofarmacología , Femenino , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/aislamiento & purificación , Inhibidores de la Lipooxigenasa/uso terapéutico , Masculino , Simulación del Acoplamiento Molecular , Pruebas de Mutagenicidad , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Tallos de la Planta/química , Enfermedad Pulmonar Obstructiva Crónica/etiología , Ratas , Ratas Wistar , Contaminación por Humo de Tabaco/efectos adversos , Resultado del TratamientoRESUMEN
The stingless bee, Melipona fasciculata Smith (Apidae, Meliponini), is a native species from Brazil. Their products have high biotechnological potential, however there are no studies about the biological activities of pollen collected by M. fasciculata. In this context, the present study investigated the chemical composition, anti-oxidant, anti-inflammatory, and analgesic activities of hydroethanolic pollen extracts collected by M. fasciculata in three cities in Maranhão State, Brazil. We verified the antioxidant activity of the extracts and inhibitory activity against the cyclooxygenase enzyme using in vitro assays and in allowed to select the extract with higher efficiency to be used on in vivo assays. In these trials, the selected extract showed high anti-inflammatory activity as well as nociceptive effects at central and peripheral level, suggesting that this extract acts on inhibition of histamine release and decreased synthesis of prostaglandins and the in-silico study suggested that polyphenols and acids fatty acids in the extract may be associated with these activities. The results of the present study report the high biological potential of pollen extract and we conclude that the pollen collected by M. fasciculata can be considered as the object of research for new pharmacological alternatives.
Asunto(s)
Analgésicos/química , Antiinflamatorios/química , Inhibidores de la Ciclooxigenasa/química , Extractos Vegetales/química , Polen/química , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Abejas , Brasil , Inhibidores de la Ciclooxigenasa/farmacología , Ácidos Grasos/química , Ácidos Grasos/farmacología , Masculino , Ratones , Extractos Vegetales/farmacología , Plantas/química , Polifenoles/química , Polifenoles/farmacologíaRESUMEN
The present study was carried out to investigate the presence of polymorphism in the N-acetyltransferase gene of 41 clinical isolates of Mycobacterium tuberculosis, that were resistant to isoniazid (INH) with no mutations in the hot spots of the genes previously described to be involved in INH resistance (katG, inhA and ahpC). We observed single nucleotide polymorphisms (SNPs) in ten of these, including the G619A SNP in five isolates and an additional four so far un-described mutations in another five isolates. Among the latter SNPs, two were synonymous (C276T, n=1 and C375G, n=3), while two more non-synonymous SNPs were composed of C373A (LeuâMet) and T503G (MetâArg) were observed in respectively one and two isolates. Molecular modeling and structural analysis based in a constructed full length 3D models of wild type TBNAT (TBNAT_H37Rv) and the isoforms (TBNAT_L125M and TBNAT_M168R) were also performed. The refined models show that, just as observed in human NATs, the carboxyl terminus extends deep within the folded enzyme, into close proximity to the buried catalytic triad. Analysis of tbnat that present non-synonymous mutations indicates that both substitutions are plausible to affect enzyme specificity or acetyl-CoA binding capacity. The results contribute to a better understanding of structure-function relationships of NATs. However, further investigation including INH-sensitive strains as a control group is needed to get better understanding of the possible role of these new mutations on tuberculosis control.