Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Pollut ; 358: 124528, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38992829

RESUMEN

Coastal seabirds serve as sentinels of ecosystem health due to their vulnerability to contamination from human activities. However, our understanding on how contaminant burdens affect the physiological and health condition of seabirds is still scarce, raising the uncertainty on the species' vulnerability vs tolerance to environmental contamination. Here, we quantified 15 Trace Elements (TE) in the blood of gull (yellow-legged gull Larus michahellis and Audouin's gull Ichthyaetus audouinii) and shearwater (Cory's shearwater Calonectris borealis) adults, breeding in five colonies along the Portuguese coastline. Additionally, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were quantified to elucidate foraging habitat and trophic ecology of adults, to identify potential patterns of TE contamination among colonies. We used immuno-haematological parameters as response variables to assess the influence of TE concentrations, stable isotope values, and breeding colony on adults' physiological and health condition. Remarkably, we found blood mercury (Hg) and lead (Pb) concentrations to exceed reported toxicity thresholds in 25% and 13% of individuals, respectively, raising ecotoxicological concerns for these populations. The breeding colony was the primary factor explaining variation in five out of six models, underlining the influence of inherent species needs on immuno-haematological parameters. Model selection indicated a negative relationship between erythrocyte sedimentation rate and both Hg and selenium (Se) concentrations, but a positive relationship with δ13C. The number of immature erythrocyte counts was positively related to Hg and Se, particularly in yellow-legged gulls from one colony, highlighting the colony-site context's influence on haematological parameters. Further research is needed to determine whether essential TE concentrations, particularly copper (Cu) and Se, are falling outside the normal range for seabirds or meet species-specific requirements. Continuous monitoring of non-essential TE concentrations like aluminium (Al), Hg, and Pb, is crucial due to their potential hazardous concentrations, as observed in our study colonies.


Asunto(s)
Monitoreo del Ambiente , Oligoelementos , Animales , Portugal , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua , Aves/fisiología , Aves/sangre , Mercurio/sangre , Charadriiformes/fisiología , Ecosistema , Plomo/sangre , Cruzamiento
2.
Integr Zool ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011657

RESUMEN

Natural native forests are rapidly being replaced by anthropogenic forests often with a strong presence of invasive alien plant species. Eucalypt species are widely planted worldwide, with Eucalyptus globulus plantations being particularly expressive in Portugal. Poor forestry practices often lead to the associated expansion of invasive species, such as Acacia dealbata. However, we still know relatively little about the functioning of anthropogenic forests, such as seed and pollen dispersal services. Here, we compared bird abundance and richness and the seed and pollen dispersal networks in both forest types. Anthropogenic forests presented lower bird abundance, and smaller, more simplified, and more random (abundance-based) seed dispersal services than those of natural forests. Interestingly, the pollen dispersal network was more similar than the seed dispersal network for both forest types and dominated by opportunistic and neutral processes, given the absence of specialized nectarivorous. The proportion of birds transporting seeds decreased, while those carrying pollen significantly increased in the anthropogenic forest compared to the native forest. Our work highlights the impact of anthropogenic forests on bird abundance, with consequences for seed dispersal services and forest regeneration.

3.
Oecologia ; 205(1): 135-147, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739168

RESUMEN

Animal personality can shape individual's fitness. Yet, the mechanistic relationship by which individual's personality traits lead to variations in fitness remains largely underexplored. Here, we used novel object tests to measure boldness of chick-provisioning Cory's shearwaters (Calonectris borealis) from a coastal colony off west Portugal, and deployed GPS loggers to study their at-sea behaviour and distribution. We then tested whether boldness predicts individual differences in adult's trophic ecology and variations in chick growth, to assess potential implications of personality-specific foraging behaviours. Foraging effort was higher for shyer than for bolder individuals, which, during short forays, exhibited larger foraging ranges, and foraged in regions of higher and more variable bathymetry. This suggests that nearby the colony bolder individuals expanded their foraging area to maximize resource acquisition and increase the probability of foraging success. When endeavouring to longer distances, bolder individuals exhibited comparably shorter foraging ranges and targeted low bathymetry regions, likely with enhanced prey availability, while shyer individuals exhibited much larger foraging ranges indicating greater flexibility when foraging in oceanic realms. Despite such differences between bolder and shyer individuals their isotopic niches were similar. Yet, chicks raised by bolder parents grew at a faster rate than those raised by shyer parents. Together, our results suggest that differences in resource acquisition strategies could play a key role through which individual's boldness may influence breeding performance, even when individuals have similar isotopic preferences.


Asunto(s)
Ecosistema , Animales , Aves , Portugal , Conducta Alimentaria , Conducta Predatoria
4.
Mar Environ Res ; 196: 106396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341982

RESUMEN

Polybrominated diphenyl ethers are persistent disrupters assimilated by organisms, yet little is known about their link to plastic ingestion and health effects. In an experiment, two groups of yellow-legged/lesser black-backed gulls (Larus michahellis/Larus fuscus) were fed plastics with BDE99 to assess leaching into brain, preen oil, liver and fat tissues and evaluate effects on health and stress parameters. Although most plastic was regurgitated, we observed a clear relation between plastic ingestion and chemical leaching. BDE99 exhibited higher levels in brain tissue of gulls from the plastic groups. Also, only values of cholinesterases measured in plasma were significantly reduced in the 'plastic' groups. Cholinesterase activity in the brain also tended to decrease, suggesting a negative effect in gulls' neurofunction. Results indicate that chemical leaching occurs, even when plastics stay in the stomach for a short period of time and showed that this can affect gulls' health.


Asunto(s)
Charadriiformes , Animales , Éteres Difenilos Halogenados , Hígado
5.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326253

RESUMEN

Seabirds have evolved several life-history characteristics to help buffer environmental stochasticity. However, particularly during the breeding season, seabirds may be affected by reductions in prey availability and localised oceanographic conditions caused by variations in the environment. The increase in sea surface temperature, triggered by accelerated global warming, is impairing phytoplankton production of omega-3 fatty acids (FAs). Here, we assessed the ecological role of omega-3 FAs on chick development and subsequently on breeder foraging behaviour in two closely related shearwater species foraging in contrasting marine environments. We supplemented chicks with omega-3 FA pills or with control placebo pills and monitored chick growth, chick health status and breeder at-sea foraging behaviour using global positioning system devices. We found that omega-3 chick supplementation reduced the 95% kernel utilization distribution of short trips of Cape Verde shearwaters, but overall, breeders kept a similar foraging pattern between treatments, potentially influenced by predictable prey patches off the West African coast. In contrast, for Cory's shearwaters, the parents of the omega-3 group greatly reduced the foraging effort. This suggests that the proximity to productive prey patches around the colony may help birds to adjust their effort and, therefore, energy expenditure, to changes in the development of their offspring, as driven by their nutritional status. Overall, our results suggest a link between a chick diet enriched in omega-3 FAs and parental foraging effort, providing insight into their ability to cope with a changing and increasingly stochastic marine environment.


Asunto(s)
Pollos , Dieta , Animales , Dieta/veterinaria , Suplementos Dietéticos , Conducta Alimentaria , Estado Nutricional
6.
Mar Environ Res ; 187: 105955, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37003079

RESUMEN

Overfishing has been drastically changing food webs in marine ecosystems, and it is pivotal to quantify these changes at the ecosystem level. This is especially important for ecosystems with a high diversity of top predators such as the Eastern Atlantic marine region. In this work we used high-throughput sequencing methods to describe the diet of the two most abundant tuna species, the Skipjack tuna (Katsuwonus pelamis) and the Yellowfin tuna (Thunnus albacares), highly targeted by fisheries off west Africa. We also explored prey diversity overlap between these tuna species and the seabird species breeding in Cabo Verde that are most likely to share prey preferences and suffer from bycatch, the Brown booby (Sula leucogaster) and Cape Verde shearwater (Calonectris edwardsii). Overall, the diet of both tuna species was more diverse than that of seabirds. Skipjack tuna diet was dominated by prey from lower trophic levels, such as krill, anchovies, and siphonophores, while the Yellowfin tuna diet was mainly based on epipelagic fish such as flying and halfbeak fishes. Some of the most abundant prey families detected in the Yellowfin tuna diet were shared with both seabird species, resulting in a high prey diversity overlap between this tuna species and seabirds These results have implications for the management of tuna fisheries in the Eastern Tropical Atlantic, because a large decrease of both tuna species might have cascading effects on both primary and secondary consumer levels, and the decrease of these underwater predators may have implications on the viability of tropical seabird populations.


Asunto(s)
Ecosistema , Atún , Animales , Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Explotaciones Pesqueras , Aves
7.
Environ Pollut ; 323: 121187, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736563

RESUMEN

Mercury (Hg) is a highly toxic metal that adversely impacts human and wildlife health. The amount of Hg released globally in the environment has increased steadily since the Industrial Revolution, resulting in growing contamination in biota. Seabirds have been extensively studied to monitor Hg contamination in the world's oceans. Multidecadal increases in seabird Hg contamination have been documented in polar, temperate and subtropical regions, whereas in tropical regions they are largely unknown. Since seabirds accumulate Hg mainly from their diet, their trophic ecology is fundamental in understanding their Hg exposure over time. Here, we used the sooty tern (Onychoprion fuscatus), the most abundant tropical seabird, as bioindicator of temporal variations in Hg transfer to marine predators in tropical ecosystems, in response to trophic changes and other potential drivers. Body feathers were sampled from 220 sooty terns, from museum specimens (n = 134) and free-living birds (n = 86) from Ascension Island, in the South Atlantic Ocean, over 145 years (1876-2021). Chemical analyses included (i) total- and methyl-Hg, and (ii) carbon (δ1³C) and nitrogen (δ15N) stable isotopes, as proxies of foraging habitat and trophic position, respectively, to investigate the relationship between trophic ecology and Hg contamination over time. Despite current regulations on its global emissions, mean Hg concentrations were 58.9% higher in the 2020s (2.0 µg g-1, n = 34) than in the 1920s (1.2 µg g-1, n = 107). Feather Hg concentrations were negatively and positively associated with δ1³C and δ15N values, respectively. The sharp decline of 2.9 ‰ in δ1³C values over time indicates ecosystem-wide changes (shifting primary productivity) in the tropical South Atlantic Ocean and can help explain the observed increase in terns' feather Hg concentrations. Overall, this study provides invaluable information on how ecosystem-wide changes can increase Hg contamination of tropical marine predators and reinforces the need for long-term regulations of harmful contaminants at the global scale.


Asunto(s)
Charadriiformes , Mercurio , Animales , Humanos , Ecosistema , Mercurio/análisis , Monitoreo del Ambiente/métodos , Aves , Océano Atlántico
8.
Oecologia ; 199(1): 13-26, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35044501

RESUMEN

Foraging spatial segregation is frequent in central-place foragers during the breeding season, but very few studies have investigated foraging spatial segregation between adjacent sub-colonies. Here, we assessed for within-colony differences in the at-sea distribution, habitat use, trophic ecology and chick growth data of two Calonectris colonies differing in size, and breeding in two different environments in the North Atlantic Ocean. For this, we GPS tracked 52 Cory's shearwaters (Calonectris borealis) breeding in 2 small sub-colonies at Berlenga Island (Portugal) and 59 Cape Verde shearwaters (Calonectris edwardsii) breeding in 2 sub-colonies differing greatly in size at Raso Islet (Cabo Verde), over 2 consecutive breeding seasons (2017-2018), during chick-rearing. Cory's shearwaters from the two sub-colonies at Berlenga Island broadly overlapped in repeatedly used foraging patches close to the colony. In contrast, the foraging distribution of Cape Verde shearwaters was partially segregated in the colony surroundings, but overlapped at distant foraging areas off the west coast of Africa. Despite spatial segregation close to the colony, Cape Verde shearwaters from both sub-colonies departed in similar directions, foraged in similar habitats and exhibited mostly short trips within the archipelago of Cabo Verde. These results, corroborated with similar trophic ecology and chick growth rates between sub-colonies, support the idea that foraging spatial segregation in the colony surroundings was not likely driven by interference competition or directional bias. We suggest that high-quality prey patches are able to shape travel costs and foraging distribution of central-place foragers from neighbouring sub-colonies.


Asunto(s)
Aves , Ecología , Animales , Océano Atlántico , Ecosistema , Estaciones del Año
9.
Sci Total Environ ; 809: 151093, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699816

RESUMEN

Urban habitats offer spatially and temporally predictable anthropogenic food sources for opportunistic species, such as several species of gulls that are known to exploit urban areas and take advantage of accessible and diverse food sources, reducing foraging time and energy expenditure. However, human-derived food may have a poorer nutritional quality than the typical natural food resources and foraging in urban habitats may increase birds' susceptibility of ingesting anthropogenic debris materials, with unknown physiological consequences for urban dwellers. Here we compare the fatty acids (FA) composition of two opportunistic gull species (the yellow-legged gull, Larus michahellis, and the lesser black-backed gull, Larus fuscus) from areas with different levels of urbanization, to assess differences in birds' diet quality among foraging habitats, and we investigate the effects of ingesting anthropogenic materials, a toxicological stressor, on gulls' FA composition. Using GC-MS, 23 FAs were identified in the adipose tissue of both gull species. Significant differences in gulls' FA composition were detected among the three urbanization levels, mainly due to physiologically important highly unsaturated FAs that had lower percentages in gulls from the most urbanized habitats, consistent with a diet based on anthropogenic food resources. The deficiency in omega (ω)-3 FAs and the higher ω-6:ω-3 FAs ratio in gulls from the most urbanized location may indicate a diet-induced susceptibility to inflammation. No significant differences in overall FA composition were detected between gull species. While we were unable to detect any effect of ingested anthropogenic materials on gulls' FA composition, these data constitute a valuable contribution to the limited FA literature in gulls. We encourage studies to explore the long-term physiological effects of the lower nutritional quality diet for urban dwellers, and to detect the sub-lethal impacts of the ingestion of anthropogenic materials.


Asunto(s)
Charadriiformes , Animales , Ingestión de Alimentos , Ecosistema , Ácidos Grasos , Humanos , Urbanización
10.
Environ Pollut ; 292(Pt B): 118451, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740735

RESUMEN

The assessment of contaminant exposure in marine organisms often focuses on the most toxic chemical elements from upper trophic level species. Information on mid-trophic level species and particularly on potentially less harmful elements is lacking. Additionally, microplastics have been considered emergent contaminants in aquatic environments which have not been extensively studied in species from mid-trophic levels in food chains. This study aims to contribute to an overall assessment of environmental impacts of such chemicals in a community of small pelagic fish in the North Atlantic. The concentrations of 16 chemical elements, rarely simultaneously quantified (including minerals, trace elements and heavy metals), and the presence of microplastics were analysed in sardines (Sardina pilchardus) and mackerels (Scomber spp. and Trachurus trachurus) sampled along the Portuguese coast. Biochemical stress assessments and stable isotope analyses were also performed. The chemical element concentrations in S. pilchardus, T. trachurus, and Scomber spp. were relatively low and lower than the levels reported for the same species in the North Atlantic and adjacent areas. No clear relationships were found between chemical elements and oxidative damage in fish. However, the concentration of several chemical elements showed differences among species, being related with the species' habitat use, trophic niches, and specific feeding strategies. The presence of plastic pieces in the stomachs of 29% of the sampled fishes is particularly concerning, as these small pelagic fish from mid-trophic levels compose a significant part of the diet of humans and other top predators. This study highlights the importance of multidisciplinary approaches focusing on the individual, including position data, stable isotopes, and oxidative stress biomarkers as complementary tools in contamination assessment of the marine mid-trophic levels in food chains.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Peces , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis
11.
PLoS One ; 16(6): e0253095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34153067

RESUMEN

In the oligotrophic tropical marine environment resources are usually more patchily distributed and less abundant to top predators. Thus, spatial and trophic competition can emerge, especially between related seabird species belonging to the same ecological guild. Here we studied the foraging ecology of two sympatric species-brown booby (BRBO) Sula leucogaster (breeding) and red-footed boobies (RFBO) Sula sula (non-breeding)-at Raso islet (Cabo Verde), across different seasons. Sexual segregation was only observed during Jun-Oct, when RFBO were present, with larger females BRBO remaining closer to the colonies, while males and RFBO travelled further and exploited different habitats. Overall, species appeared to prefer areas with specific oceanic features, particularly those related with oceanic currents and responsible for enhancing primary productivity in tropical oceanic areas (e.g. Sea Surface Height and Ocean Mixed Layer Thickness). Female BRBOs showed high foraging-site fidelity during the period of sympatry, while exploiting the same prey species as the other birds. However, during the months of co-existence (Jun.-Oct.), isotopic mixing models suggested that female BRBO would consume a higher proportion of epipelagic fish, whereas female RFBO would consume more squid compared to the other birds, possibly due to habitat-specific prey availability and breeding energy-constraints for BRBO. We conclude that divergent parental roles, environmental conditions, habitat preference and competition could be mechanisms simultaneously underlying sexual segregation for BRBO during a period of co-existence, while inter-specific foraging differences appear to be more affected by habitat preference and different breeding stages. These results support previous statements that BRBO can adapt their foraging ecology to different circumstances of environmental conditions and competition, and that marine physical features play an important role in foraging decisions of boobies.


Asunto(s)
Distribución Animal/fisiología , Aves/fisiología , Ecosistema , Conducta Alimentaria , Estaciones del Año , Simpatría , Animales , Femenino , Masculino , Estado Nutricional , Océanos y Mares
12.
Environ Pollut ; 284: 117502, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34098370

RESUMEN

Multidisciplinary approaches are essential to diligently assess environmental health status of ecosystems. In this study, year-round chemical elements' exposure and impacts were assessed on the wide-ranging Cory's shearwater Calonectris borealis breeding in Berlenga Island, offshore Portugal, North Atlantic Ocean. The aim was to identify potential contamination and oxidative stress sources associated with trophic ecology, habitat and spatial use, and foraging patterns. A set of 20 chemical elements were quantified, along with oxidative stress biomarkers, stable isotope analyses, and GPS tracking data. Birds presented higher accumulation to some non-essential elements along the year (i.e. arsenic, As; cadmium, Cd; mercury, Hg; lead, Pb; and strontium, Sr), in which concentrations were similar or surpassed other procellariform seabird populations all over the world. No significant differences were found for any of the elements between different periods within the breeding season, with exception of Hg. However, a Principal Component Analysis taking into consideration a group of elements showed differences between pre-laying and chick-rearing periods, with overall higher concentrations in the former. Individuals spending more time engaging in an intensive search for food, and in more coastal environments, presented overall higher element concentrations, and particularly Hg. Contrary to expectations, no relationships were found between chemical elements and oxidative stress. On the other hand, spatial use and foraging patterns of Cory's shearwaters influenced their oxidative stress responses. Our results highlight the need for multidisciplinary approaches to deepen understanding of the large-scale vulnerability of bioindicators such as seabirds and, by extension, the overall environmental health of ecosystems in which they rely.


Asunto(s)
Aves , Ecosistema , Animales , Océano Atlántico , Estrés Oxidativo , Portugal
13.
Environ Sci Pollut Res Int ; 28(15): 19046-19063, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33394440

RESUMEN

Pollution is a global concern, increasing rapidly throughout marine and terrestrial ecosystems, and affecting many species. Urbanization enhances waste production, leading to the opening of landfills that constitute a spatially and temporally predictable food source for opportunistic species. Several species of gulls are known to exploit and breed in urban areas, taking advantage of accessible and diverse food resources. The exploitation of anthropogenic food subsidies at sea (e.g. fishery discards), urban sites, and landfills leads to debris ingestion by gulls with potential negative effects. Here we characterize anthropogenic debris ingested by yellow-legged gulls (Larus michahellis) along Portugal, by analysing the content of pellets collected in (1) natural and urban breeding locations, and in (2) urban and landfill resting sites, to assess seasonal patterns in the ingestion of anthropogenic debris. We also relate diet with the presence of anthropogenic debris. Debris materials were found in 28.8% of pellets from breeding locations (natural and urban) and in 89.7% of pellets from resting sites (urban and landfill). Gulls from the most urbanized breeding location exhibited higher levels of ingested materials during the entire breeding cycle, however, gulls from a natural breeding site also ingested high levels of debris during the pre-breeding season. At resting sites, small seasonal differences were detected in the number and mass of debris items ingested, which were both higher during spring and summer. Gulls that typically fed on pelagic fish had significantly less sheet and fragment plastics in their pellets. The presence of certain debris categories in gull pellets was positively related to the presence of some prey items, suggesting that gulls may accidentally ingest debris while foraging at multiple habitats. The quantity of anthropogenic materials ingested by gulls from urban locations and landfills indicates a need for improved waste management.


Asunto(s)
Charadriiformes , Animales , Dieta , Ingestión de Alimentos , Ecosistema , Monitoreo del Ambiente , Plásticos , Portugal , Instalaciones de Eliminación de Residuos
14.
Mar Environ Res ; 162: 105165, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068920

RESUMEN

Pelagic seabirds exhibit plasticity in foraging characteristics in relation to oceanographic conditions. This should be particularly relevant in tropical marine environments where food resources are naturally more unpredictable. We studied how inter-annual variations (2013-2018) in tropical oceanographic conditions (driver of oceanic productivity) can influence the spatial and trophic ecology of Cape Verde shearwater (Calonectris edwardsii) during the breeding season. During years of poor oceanographic conditions around the colony, birds engaged in longer trips to West Africa, showed higher spatial and behavioural consistency, and presented a wider isotopic niche. Opposite patterns were generally found for years of good oceanographic conditions, when birds foraged more on their colony surroundings. New foraging areas off West Africa were highlighted as relevant, especially during years of poor environmental conditions. This study highlights the need for long-term studies to assess variation in foraging areas and foraging decisions by seabird populations.


Asunto(s)
Aves , Ecología , Animales , Estado Nutricional , Océanos y Mares , Estaciones del Año
15.
Mar Pollut Bull ; 159: 111439, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32692669

RESUMEN

Metal pollution is currently a major issue in marine ecosystems, as organisms, and particularly seabirds, are exposed and accumulating increased levels from several anthropogenic sources. A set of 13 metals were quantified in two gull species breeding in sympatry, and in two distinct colonies separated by ca. 400 km. Oxidative stress was measured, and stable isotope analyses were used to link metal contamination and oxidative stress with the trophic ecology of each species/population. There was a clear segregation of metal contamination between the two species and to a much lesser extent between colonies. Overall, Audouin's gull was the most contaminated species for most metals, once this species relies mainly on fish and other marine resources. The Yellow-legged gull feeds regularly on terrestrial food sources besides fish, which may dilute contamination levels. Oxidative stress responses were related with birds' trophic ecology and foraging habitat, but apparently not with metal contamination.


Asunto(s)
Charadriiformes , Animales , Cruzamiento , Ecosistema , Salud Ambiental , Monitoreo del Ambiente , Metales , Estrés Oxidativo , Simpatría
16.
Environ Sci Pollut Res Int ; 27(29): 36954-36969, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32577968

RESUMEN

Anthropogenic materials are a persistent pressure on ecosystems, affecting many species. Seabirds can collect these materials to construct their nests, which may modify nest characteristics and cause entanglement of chicks and adults, with possible consequences on breeding success. The incorporation of anthropogenic materials in nests of seabird species that breed in both natural and urban environments, such as gulls, is poorly known. Here, we characterize and compare anthropogenic materials incorporated in yellow-legged gull (Larus michahellis) nests from two natural and two urban breeding sites across their Portuguese breeding range and during 2 consecutive years. Anthropogenic materials were found in 2.6% and 15.4% of gull nests from natural locations and in 47.6% and 95.7% of nests from urban breeding sites. No differences were found on hatching success between urban and natural breeding colonies. A significantly higher number of anthropogenic materials were found in the largest and more populated urban breeding colony, which on average included items of a greater mass but smaller size than items from the other three colonies. The higher incorporation of anthropogenic materials in urban locations could be a consequence of a lower access to natural nest construction materials and higher availability of anthropogenic debris. The quantity and diversity of anthropogenic materials incorporated in gull nests from urban locations indicate a need for improved debris management in urban settlements.


Asunto(s)
Charadriiformes , Animales , Cruzamiento , Ecosistema , Portugal
17.
Environ Res ; 187: 109680, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32460095

RESUMEN

Mercury is a bioaccumulating toxic pollutant which can reach humans through the consumption of contaminated food (e.g. marine fish). Although the Southern Ocean is often portrayed as a pristine ecosystem, its fishery products are not immune to mercury contamination. We analysed mercury concentration (organic and inorganic forms - T-Hg) in the muscle of Antarctic toothfish, Dissostichus mawsoni, a long-lived top predator which supports a highly profitable fishery. Our samples were collected in three fishing areas (one seamount and two on the continental slope) in the Southwest Pacific Sector of the Southern Ocean during the 2016/2017 fishing season. Mercury levels and the size range of fish varied between fishing areas, with the highest levels (0.68 ± 0.45 mg kg-1 wwt) occurring on the Amundsen Sea seamount where catches were dominated by larger, older fish. The most parsimonious model of mercury concentration included both age and habitat (seamount vs continental slope) as explanatory variables. Mean mercury levels for each fishing area were higher than those in all previous studies of D. mawsoni, with mean values for the Amundsen Sea seamount exceeding the 0.5 mg kg-1 food safety threshold for the first time. It might therefore be appropriate to add D. mawsoni to the list of taxa, such as swordfish and sharks, which are known to exceed this threshold. This apparent increase in mercury levels suggests a recent contamination event which affected the Southwest Pacific sector, including both the Amundsen and Dumont D'Urville seas.


Asunto(s)
Mercurio , Perciformes , Animales , Regiones Antárticas , Ecosistema , Humanos , Mercurio/análisis , Océanos y Mares
18.
Anim Cogn ; 23(4): 629-642, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32152923

RESUMEN

Oceans are extremely dynamic environments, which poses challenges for top-predators such as seabirds to find food resources. Yet, seabirds evolved sensorial abilities (olfactory senses) along with complex behaviours (social information transfer through local enhancement) to improve foraging efficiency. Using the Cory's shearwater (Calonectris borealis) as a model species, we developed an individual-based model to explore the complementary role of different searching mechanisms (olfactory foraging and local enhancement) for the optimal foraging behaviour of pelagic seabirds during 1-day foraging trips around breeding colonies. Model outputs were compared with observed patterns of Cory's shearwaters distribution during local foraging trips. Also, the foraging efficiency of virtual individuals was analysed considering hypothetical scenarios of foraging conditions and densities of foraging individuals around breeding colonies. The results support the use of a combination of searching strategies by Cory's shearwaters, which produced representative patterns of space use from tracked individuals, including spatial foraging segregation of neighbouring sub-colonies. Furthermore, while the mechanisms underpinning local enhancement played a key role in mitigating sub-optimal foraging conditions, the use of olfactory senses conferred great adaptive foraging advantages over a wide range of environmental conditions. Our results also indicate a synergistic effect between the two strategies, which suggests that a multimodal foraging strategy is useful to forage in extremely dynamic environments. The developed model provides a basis for further investigation regarding the role of foraging mechanisms in the population dynamics of colonial animals, including the adaptive foraging behaviour of marine top predators to dynamic environmental conditions.


Asunto(s)
Señales (Psicología) , Olfato , Animales , Aves , Conducta Alimentaria , Océanos y Mares
19.
Sci Rep ; 9(1): 10065, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296911

RESUMEN

Mechanisms underlying fat accumulation for long-distance migration are not fully understood. This is especially relevant in the context of global change, as many migrants are dealing with changes in natural habitats and associated food sources and energy stores. The continental Black-tailed godwit Limosa limosa limosa is a long-distance migratory bird that has undergone a considerable dietary shift over the past few decades. Historically, godwits fed on an animal-based diet, but currently, during the non-breeding period godwits feed almost exclusively on rice seeds. The latter diet may allow building up of their fuel stores for migration by significantly increasing de novo lipogenesis (DNL) activity. Here, we performed an experiment to investigate lipid flux and the abundance of key enzymes involved in DNL in godwits, during fasting and refueling periods at the staging site, while feeding on rice seeds or fly larvae. Despite no significant differences found in enzymatic abundance (FASN, ME1, ACC and LPL) in stored fat, experimental godwits feeding on rice seeds presented high rates of DNL when compared to fly-larvae fed birds (~35 times more) and fasted godwits (no DNL activity). The increase of fractional DNL in godwits feeding on a carbohydrate-rich diet can potentially be enhanced by the fasting period that stimulates lipogenesis. Although requiring further testing, these recent findings provide new insights into the mechanisms of avian fat accumulation during a fasting and refueling cycle and associated responses to habitat and dietary changes in a migratory species.


Asunto(s)
Tejido Adiposo/fisiología , Migración Animal/fisiología , Aves/fisiología , Animales , Dieta , Dietoterapia , Ecosistema , Lipogénesis , Oryza , Estaciones del Año
20.
Mar Environ Res ; 150: 104757, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31306868

RESUMEN

Sympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: -19.21 ±â€¯1.87‰, mean ±â€¯SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ±â€¯0.40‰, in A. polymorpha, and 7.84 ±â€¯0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ±â€¯0.009  µg g-1, muscle: 0.322 ±â€¯0.088  µg g-1; P. turqueti - beaks: 0.038 ±â€¯0.009  µg g-1; muscle: 0.434 ±â€¯0.128  µg g-1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context.


Asunto(s)
Pico , Cambio Climático , Cadena Alimentaria , Mercurio , Animales , Regiones Antárticas , Pico/química , Isótopos de Carbono , Dieta , Ecosistema , Mercurio/análisis , Isótopos de Nitrógeno , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA