Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Luminescence ; 39(1): e4678, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286604

RESUMEN

The intermolecular aggregation between the solvent and organic molecules is covered in the current article. 4,4'-(Buta-1,3-diyne-1,4-diyl)dibenzoic acid (DADBA) was used as an organic molecule and dimethyl sulfoxide (DMSO) as a solvent to create the target compound DADBA-DMSO. The material's hydrogen bonding and intermolecular aggregation were determined by appropriate characterization methods, including single-crystal X-ray diffraction (XRD), Fourier-transform infrared (FTIR), photoluminescence (PL), and cyclic voltammetry (CV) analysis. Each hydrogen of the carboxylic group is coordinated by oxygen from the DMSO molecule in the stiff planar layer packing that makes up the DADBA-DMSO crystal structure.


Asunto(s)
Dimetilsulfóxido , Solventes/química , Dimetilsulfóxido/química , Cristalografía por Rayos X , Enlace de Hidrógeno
2.
Pharmaceutics ; 15(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376080

RESUMEN

Stimuli-responsive controlled drug delivery systems have attracted the attention of researchers in recent decades due to their potential application in developing efficient drug carriers that are responsive to applied stimuli triggers. In this work, we present the synthesis of L-lysine (an amino acid that combines both amine and carboxylic acid groups in a single unit) modified mesoporous silica nanoparticles (MS@Lys NPs) for the delivery of the anticancer bioactive agent (curcumin, Cur) to cancer cells. To begin, mesoporous silica hybrid nanoparticles (MS@GPTS NPs) with 3-glycidoxypropyl trimethoxy silane (GPTS) were synthesized. The L-lysine groups were then functionalized onto the mesopore channel surfaces of the MS@GPTS NPs through a ring-opening reaction between the epoxy groups of the GPTS and the amine groups of the L-lysine units. Several instrumental techniques were used to examine the structural properties of the prepared L-lysine-modified mesoporous silica nanoparticles (MS@Lys NPs). The drug loading and pH-responsive drug delivery behavior of MS@Lys NPs were studied at different pH levels (pH 7.4, 6.5, and 4.0) using curcumin (Cur) as a model anticancer bioactive agent. The MS@Lys NPs' in vitro cytocompatibility and cell uptake behavior were also examined using MDA-MB-231 cells. The experimental results imply that MS@Lys NPs might be used in cancer therapy as pH-responsive drug delivery applications.

3.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236077

RESUMEN

Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm HG was characterized using various instrumental characterizations. Moreover, the PNIPAm-co-PAAm HG's thermoresponsive phase transition behavior was investigated, and the results showed that the prepared HG responds to temperature changes. In vitro drug loading and release behavior of PNIPAm-co-PAAm HG was investigated using Curcumin (Cur) as the model cargo under different pH and temperature conditions. The PNIPAm-co-PAAm HG showed pH and temperature-responsive drug release behavior and demonstrated about 65% Cur loading efficiency. A nearly complete release of the loaded Cur occurred from the PNIPAm-co-PAAm HG over 4 h at pH 5.5 and 40 °C. The cytotoxicity study was performed on a liver cancer cell line (HepG2 cells), which revealed that the prepared PNIPAm-co-PAAm HG showed good biocompatibility, suggesting that it could be applied as a drug delivery carrier. Moreover, the in vitro cytocompatibility test (MTT assay) results revealed that the PNIPAm-co-PAAm HG is biocompatible. Therefore, the PNIPAm-co-PAAm HG has the potential to be useful in the delivery of drugs in solid tumor-targeted therapy.

4.
Chemosphere ; 308(Pt 2): 136417, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36108760

RESUMEN

Treatment of recalcitrant and xenobiotic pharmaceutical compounds in polluted waters have gained significant attention of the environmental scientists. Antibiotics are diffused into the environment widely owing to their high usages, very particularly in the last two years due to over consumption during covid 19 pandemic worldwide. Quinolones are very effective antibiotics, but do not get completely metabolized due to which they pose severe health hazards if discharged without proper treatment. The commonly reported treatment methods for quinolones are adsorption and advanced oxidation methods. In both the treatment methods, metal organic frameworks (MOF) have been proved to be promising materials used as stand-alone or combined technique. Many composite MOF materials synthesized from renewable, natural, and harmless materials by eco-friendly techniques have been reported to be effective in the treatment of quinolones. In the present article, special focus is given on the abatement of norfloxacin and ofloxacin contaminated wastewater using MOFs by adsorption, oxidation/ozonation, photocatalytic degradation, electro-fenton methods, etc. However, integration of adsorption with any advanced oxidation methods was found to be best remediation technique. Of various MOFs reported by several researchers, the MIL-101(Cr)-SO3H composite was able to give 99% removal of norfloxacin by adsorption. The MIL - 88A(Fe) composite and Fe LDH carbon felt cathode were reported to yield 100% degradation of ofloxacin by photo-Fenton and electro-fenton methods respectively. The synthesis methods and mechanism of action of MOFs towards the treatment of norfloxacin and ofloxacin as reported by several investigation reports are also presented.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Estructuras Metalorgánicas , Ozono , Antibacterianos , Fibra de Carbono , Humanos , Norfloxacino , Ofloxacino , Aguas Residuales , Xenobióticos
5.
Gels ; 9(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36661802

RESUMEN

Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.

6.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36616517

RESUMEN

The therapeutic delivery system with dual stimuli-responsiveness has attracted attention for drug delivery to target sites. In this study, we used free radical polymerization to develop a temperature and pH-responsive poly(N-isopropyl acrylamide)-co-poly(acrylamide) (PNIPAM-co-PAAm). PNIPAm-co-PAAm copolymer by reacting with N-isopropyl acrylamide (NIPAm) and acrylamide (Am) monomers. In addition, the synthesized melamine-glutaraldehyde (Mela-Glu) precursor was used as a cross-linker in the production of the melamine cross-linked PNIPAm-co-PAAm copolymer hydrogel (PNIPAm-co-PAAm-Mela HG) system. The temperature-responsive phase transition characteristics of the resulting PNIPAM-co-PAAm-Mela HG systems were determined. Furthermore, the pH-responsive drug release efficiency of curcumin was investigated under various pH and temperature circumstances. Under the combined pH and temperature stimuli (pH 5.0/45 °C), the PNIPAm-co-PAAm-Mela HG demonstrated substantial drug loading (74%), and nearly complete release of the loaded drug was accomplished in 8 h. Furthermore, the cytocompatibility of the PNIPAm-co-PAAm-Mela HG was evaluated on a human liver cancer cell line (HepG2), and the findings demonstrated that the prepared PNIPAm-co-PAAm-Mela HG is biocompatible. As a result, the PNIPAm-co-PAAm-Mela HG system might be used for both pH and temperature-stimuli-responsive drug delivery.

7.
Polymers (Basel) ; 13(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206681

RESUMEN

Supercapacitors store energy either by ion adsorption or fast surface redox reactions. The capacitance produced by the former is known as electrochemical double layer capacitance and the latter is known as pseudo-capacitance. Carbon materials are found to be attractive materials for energy storage, due to their various micro-structures and wide source of availability. Polybenzoxazine (Pbz) is used as a source to produce carbon materials, due to the fact that the obtained carbon will be rich in N and O species for enhanced performance. Moreover, the carbon materials were produced via template-free method. In general, activation temperature plays a main role in altering the porosity of the carbon materials. The main purpose of this study is to find the suitable activation temperature necessary to produce porous carbons with enhanced performance. Considering these points, Pbz is used as a precursor to produce nitrogen-doped porous carbons (NRPCs) without using any template. Three different activation temperatures, namely 700, 800 and 900 °C, are chosen to prepare activated porous carbons; NRPC-700, NRPC-800 and NRPC-900. Hierarchical micro-/ meso-/macropores were developed in the porous carbons with respect to different activation temperatures. PBz source is used to produce carbons containing heteroatoms and an activation process is used to produce carbons with desirable pore structures. The surface morphology, pore structure and binding of heteroatoms to the carbon surface were analyzed in detail. NRPCs produced in this way can be used as supercapacitors. Further, electrodes were developed using these NRPCs and their electrochemical performance including capacitance, specific capacitance, galvanic charge/discharge, impedance, rate capability are analyzed. The obtained results showed that the activation temperature of 900 °C, is suitable to produce NRPC with a specific capacitance of 245 F g-1 at a current density of 0.5 A g-1, that are attributed to high surface area, suitable pore structure and presence of heteroatoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA