Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 207: 116860, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159570

RESUMEN

Coastal pollutants, from harmful algal blooms, sewage and industrial discharges, pose severe risks to marine ecosystems and public health. Recently, Promenade Beach in Puducherry, Southeast-India, experienced reddish-brown water discoloration, suspected to result from either algal blooms or suspended matter. This study monitored the spatial extent and characteristics of the discoloration using Sentinel-2 satellite images from September to November 2023, with field observations and laboratory analyses. Analyses included measurements of chlorophyll-a (Chl-a), Total Suspended Matter (TSM), and the Normalized Difference Chlorophyll Index (NDCI) to differentiate between algal blooms and other pollutants. The satellite data indicated extents of discoloration, with high TSM concentrations (>45 g/m3) and negative NDCI values suggesting absence of algal blooms. No mortality of aquatic organisms was observed during this discoloration, indicating no deleterious impact on aquatic life. This approach highlights the importance of combining satellite technology with field data for effective coastal pollution monitoring, essential for protecting marine ecosystems.


Asunto(s)
Clorofila A , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Clorofila/análisis , India , Imágenes Satelitales , Floraciones de Algas Nocivas , Agua de Mar/química , Ecosistema
2.
3 Biotech ; 12(12): 346, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386567

RESUMEN

Fungal laccases are versatile biocatalyst and occupy a prominent place in various industrial applications due to its broad substrate specificity. The simplest method to enhance the laccase production is by usage of cheap substrates in the fermentation processes incorporating modeling approaches for optimization. Integrated biorefinery concept is receiving wide popularity by making use of various products from microalgal biomass. The research aimed to identify the potential of deoiled microalgal biomass (DMB), a waste product from algal biorefinery as a nutrient supplement to enhance laccase production in Pleurotus floridanus by submerged fermentation. The maximum production was obtained in the presence of DMB as an additional nutrient supplement and copper sulfate as an inducer. The predictive capabilities of the two methodologies Response Surface Methodology (RSM) and hybrid Particle swarm optimization (PSO)-based Artificial Neural Network (ANN) were compared and validated. The results showed that ANN coupled with PSO predicted with more accuracy with an R 2 value of 0.99 than the RSM model with an R 2 value of 0.97. The optimized condition as predicted by superior model hybrid PSO-based ANN was glucose (3.51%), DMB (0.545%), pH (4.9), temperature (24.68 â„ƒ) and CuSO4 (1.35 mM). The experimental laccase activity was 80.45 ± 0.132 U/mL which was 1.3 fold higher than unoptimized condition. This study promotes the usage of DMB as a novel supplement for the improved production of Pleurotus floridanus laccase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03404-y.

3.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 439-450, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35818224

RESUMEN

Laccase producing fungus Pleurotus floridanus was isolated from Siruvani forest, Tamil Nadu, India. The potential of P. floridanus to produce laccase by using various lignocellulosic substrates was screened under submerged fermentation. Laccase production in the presence of lignocellulosic substrates such as rice, wheat and maize bran as a sole source of carbon as well as an additional supplement was examined. Laccase activity of P. floridanus using varied substrates was observed in the order of rice bran > wheat bran > maize bran. The isolate showed maximum laccase activity of 13.29±0.01 U/mL using rice bran as a carbon source within 11 days. This was 18 fold higher than the control media that lacks lignocellulosic substrates. The diclofenac tolerance was assessed in solid media at various concentrations and the results showed that the mycelia growth is not significantly affected by the drug. Finally, the laccase mediated degradation of diclofenac at a concentration of 10 mg/L showed 98% degradation in 2 h. The phytotoxicity of the crude laccase treated diclofenac was lower than the untreated diclofenac. In conclusion, findings suggested direct application of crude laccase produced from P. floridanus using agro-residues as ideal substrate for environmental applications.


Asunto(s)
Lacasa , Pleurotus , Biotransformación , Carbono , Diclofenaco/toxicidad , India , Lacasa/metabolismo , Pleurotus/metabolismo
4.
Microb Pathog ; 159: 105133, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34390768

RESUMEN

Zoonotic viruses originate from birds or animal sources and responsible for disease transmission from animals to people through zoonotic spill over and presents a significant global health concern due to lack of rapid diagnostics and therapeutics. The Corona viruses (CoV) were known to be transmitted in mammals. Early this year, SARS-CoV-2, a novel strain of corona virus, was identified as the causative pathogen of an outbreak of viral pneumonia in Wuhan, China. The disease later named corona virus disease 2019 (COVID-19), subsequently spread across the globe rapidly. Nano-particles and viruses are comparable in size, which serves to be a major advantage of using nano-material in clinical strategy to combat viruses. Nanotechnology provides novel solutions against zoonotic viruses by providing cheap and efficient detection methods, novel, and new effective rapid diagnostics and therapeutics. The prospective of nanotechnology in COVID 19 is exceptionally high due to their small size, large surface-to-volume ratio, susceptibility to modification, intrinsic viricidal activity. The nano-based strategies address the COVID 19 by extending their role in i) designing nano-materials for drug/vaccine delivery, ii) developing nano-based diagnostic approaches like nano-sensors iii) novel nano-based personal protection equipment to be used in prevention strategies.This review aims to bring attention to the significant contribution of nanotechnology to mitigate against zoonotic viral pandemics by prevention, faster diagnosis and medication point of view.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Animales , Humanos , Nanotecnología , Estudios Prospectivos , SARS-CoV-2
5.
Bioinformation ; 16(4): 323-331, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32773992

RESUMEN

Fungal laccases are widely known for the degradation of recalcitrant xenobiotic compounds. Hence, it is of interest to study the interaction between laccase from Trichoderma laccase and Endocrine-Disrupting Chemical (EDC) named Bisphenol A. The molecular docking analysis of laccase from Trichoderma laccase with 23 xenobiotics and bisphenol A was completed. We show Bisphenol having optimal binding features (Glide score of -5.44 and the Glide energy -37.65 kcal/mol) with laccase from Trichoderma laccase.

6.
Biomater Res ; 23: 20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31832232

RESUMEN

In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term "nanomaterials" describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, "engineered" nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA