Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1422580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253703

RESUMEN

Methane (CH4) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain Methylosinus trichosporium OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon. The present work entails monitoring both MeOH and formate concentrations during CH4 hydroxylation, where neither a gaseous substrate nor nutrient shortage was evidenced. Under the assayed reaction conditions, bacterial stress was shown to occur, but methanol was not responsible for this. Formate addition was necessary to start MeOH production. Nuclear magnetic resonance analyses with 13C-formate proved that the formate was instrumental in regenerating NADH; formate was exhausted during the reaction, but increased quantities of formate were unable to prevent MeOH production stop. The formate mass balance showed that the formate-to-methanol yield was around 50%, suggesting a cell regulation phenomenon. Hence, this study presents the possible physiological causes that need to be investigated further. Finally, to the best of our knowledge, this study shows that the reaction can be achieved in the native bacterial culture (i.e., culture medium containing added methanol dehydrogenase inhibitors) by avoiding the centrifugation steps while limiting the hands-on time and water consumption.

2.
Antibiotics (Basel) ; 10(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807344

RESUMEN

Bacteriostatic action of a biocidal agent results from the cumulative impact of different kinetics, including those of bacterial growth, mass transfer of the agent and its antibacterial action against the targeted bacteria. Current studies on bacteriostatic effects always directly consider the combination of these kinetics at given times, without discrimination between each other. This work introduces a novel approach, consisting of first studying independently, by the experiment and the model, the different kinetics involved, and then in coupling these kinetics to obtain a model that will be confronted with experimental data. An agar diffusion test with silver ions against Escherichia coli bacteria was implemented herein to assess the relevance of this approach. This work achieved to characterize the different kinetics and to propose a dynamic model combining them, which fits the experimental data with a silver diffusivity in the biofilm fixed to 7.0 ± 0.1 × 10-12 m2 s-1. This study also proves that the diffusive phenomenon was limiting the bacteriostatic action of silver ions over the test duration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA