Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nutr ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163971

RESUMEN

BACKGROUND: Maple syrup, a minimally transformed sweetener rich in polyphenols, can exert a action and improve metabolic parameters in animal models. However, no randomized clinical trial has investigated this. OBJECTIVES: This study aims to determine whether replacing refined sugars with an equivalent quantity of maple syrup could decrease key cardiometabolic risk factors in individuals with mild metabolic alterations. METHODS: In a randomized, double-blind, controlled crossover trial with 42 overweight adults with mild cardiometabolic alterations, participants were instructed to substitute 5% of their total caloric intake from added sugars with either maple syrup or an artificially flavored sucrose syrup for 8 wk. The primary outcome included changes in glucose homeostasis, whereas secondary outcomes were changes in other cardiometabolic risk factors such as blood pressure, anthropometric indices, and blood lipid profiles. Exploratory outcomes involved analyzing changes in gut microbiota composition. RESULTS: Replacing refined sugars with maple syrup over 8 wk decreased the glucose area under the curve when compared with substituting refined sugars with sucrose syrup, as determined during the oral glucose tolerance test, leading to a significant difference between the intervention arms (-50.59 ± 201.92 compared with 29.93 ± 154.90; P < 0.047). Substituting refined sugar with maple syrup also significantly decreased android fat mass (-7.83 ± 175.05 g compared with 67.61 ± 206.71 g; P = 0.02) and systolic blood pressure (-2.72 ± 8.73 mm Hg compared with 0.87 ± 8.99 mm Hg; P = 0.03). No changes in the blood lipid profile were observed. As an exploratory outcome, we further observed that substituting refined sugars with maple syrup promoted selective taxonomic changes in the gut microbiota such as a significant reduction in the abundance of Klebsiella species and decreased microbial functions associated with bacterial-induced cytokine response, when compared with substitution with sucrose syrup. CONCLUSIONS: Substituting refined sugars with maple syrup in individuals with mild metabolic alterations result in a significantly greater reduction of key cardiometabolic risk factors compared with substitution with sucrose syrup, in association with specific changes in gut microbiota. The role of the gut microbiota in these effects remains to be further explored. This trial was registered at clinicaltrials.gov as NCT04117802.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA