Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(18): e202203282, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36546896

RESUMEN

Considering the difficulties associated with the conventional 'trial and error' method for a complete analysis of a giant molecular space, we took the aid of computational pathway (DFT) in screening a large space search of 780 (12×13×5) molecules to search for a host for the blue emitter. The selection process was completed in three Tiers with the conditions of highest theoretical triplet energy (>2.81 eV), aligned HOMO/LUMO levels w.r.t blue dopant (FIrpic), and position of substituents to meet the optimal requirements as host materials. Tier 1 screened twelve different imidazole heterocycle derivatives as base space groups which resulted in the selection of 4,5-diphenyl-1H-imidazole. Tier 2 process converged the search to mCN-CZ having the highest triplet energy and appropriate HOMO/LUMO level relative to FIrpic and ETL. Further, the carbazole of mCN-CZ was replaced with different aromatic hydrocarbons to find the other best compound in terms of triplet energy and HOMO/LUMO. Tier 3 resulted in another promising candidate (mCN-FL) as possible host materials. The band alignment with guest predicted mCN-FL and mCN-CZ to have optimal device performances compared to CZ-CZ and the experimentally observed device performance was in accordance with virtual screening results when TAPC was utilized as the hole transporter. The device results of mCN-CZ and mCN-FL were better than the reference host TCTA. The obtained results thus proved that a virtual screening process will be a useful tool for synthetic chemists in designing task-specific materials.

2.
ACS Appl Mater Interfaces ; 13(22): 26204-26217, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048214

RESUMEN

The appropriate choice of host and electron-transporting material (ETM) plays a very crucial role in the generation and collection of radiative excitons in the desired recombination zone of organic light-emitting diodes (OLEDs). Due to the sustainable development of material organic chemistry, there is a big library of functional materials that leads to uncountable combinations of device structures, which might achieve a desirable high device performance. However, there is no appropriate methodology available for the fast virtual screening of organic materials and designing a suitable device structure. Here, we have used the electrical software package SETFOS 4.5 for high-throughput virtual screening of host materials and developed a highly efficient multistack OLED device structure. To further enhance the device performance, a co-host approach has been used, and the final device structure has also been optimized with two different ETMs. The best-optimized Ir(ppy)3-based solution-processed green OLED device exhibited a maximum power efficiency (PE) of 83.20 lm/W and brightness of 61,362 cd/m2 with a driving voltage of 2.1 V without using any light extraction outcoupling techniques, which is the best among the OLEDs in its own category. The developed device structure has also been utilized to fabricate highly efficient blue hazard-free low-color temperature OLEDs for a physiologically friendly light at night. The resultant 2083 K OLED device displayed a maximum PE of 51.4 lm/W and luminance of 44,548 cd/m2 with a turn-on voltage of 2.1 V that is also 42 and 104 times safer in terms of retinal protection and ∼4 and ∼11 times safer in terms of melatonin generation when compared with those of a real candle and incandescent bulb, respectively. The observed excellent device performance may be attributed to the balanced charge carrier in the recombination zone, broader emissive layer due to a mixed-host system, less accumulation of charges at the injecting surfaces, well-aligned triplet energy and molecular orbital energy level of the host and guest, and high electron mobility and enhanced hole blocking ability of the employed ETM in the designed OLED device structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA